

Matlab Tutorial

i

MATLABTUTORIAL

Simply Easy Learning by tutorialspoint.com

tutorialspoint.com

TUTORIALS POINT

Simply Easy Learning

ABOUT THE TUTORIAL

Matlab Tutorial
MATLAB is a programming language developed by MathWorks. It started out as a matrix programming

language where linear algebra programming was simple. It can be run both under interactive sessions
and as a batch job.

This tutorial gives you aggressively a gentle introduction of MATLAB programming language. It is
designed to give students fluency in MATLAB programming language. Problem-based MATLAB examples
have been given in simple and easy way to make your learning fast and effective.

Audience
This tutorial has been prepared for the beginners to help them understand basic to advanced

functionality of MATLAB. After completing this tutorial you will find yourself at a moderate level of
expertise in using MATLAB from where you can take yourself to next levels.

Prerequisites
We assume you have a little knowledge of any computer programming and understand concepts like
variables, constants, expression, statements, etc. If you have done programming in any other high-level
programming language like C, C++ or Java, then it will be very much beneficial and learning MATLAB will
be like a fun for you.

Copyright & Disclaimer Notice

All the content and graphics on this tutorial are the property of tutorialspoint.com. Any content from

tutorialspoint.com or this tutorial may not be redistributed or reproduced in any way, shape, or form
without the written permission of tutorialspoint.com. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and tutorialspoint provides no guarantee regarding the
accuracy of the site or its contents including this tutorial. If you discover that the tutorialspoint.com site
or this tutorial content contains some errors, please contact us at webmaster@tutorialspoint.com

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
file:///C:/Users/ZARA/Desktop/webmaster@tutorialspoint.com

TUTORIALS POINT

Simply Easy Learning

Table of Content

Matlab Tutorial ... 2

Audience .. 2

Prerequisites .. 2

Copyright & Disclaimer Notice .. 2

Overview .. 10

MATLAB's Power of Computational Mathematics 10

Features of MATLAB .. 11

Uses of MATLAB .. 11

Environment ... 12

Local Environment Setup ... 12

Understanding the MATLAB Environment: ... 13

Set up GNU Octave ... 16

Basic Syntax .. 17

Hands on Practice .. 17

Use of Semicolon (;) in MATLAB .. 18

Adding Comments .. 18

Commonly used Operators and Special Characters 18

Special Variables and Constants ... 19

Naming Variables ... 19

Saving Your Work .. 20

Variables .. 21

Multiple Assignments ... 22

I have forgotten the Variables! ... 22

Long Assignments .. 23

The format Command .. 23

Creating Vectors .. 24

Creating Matrices ... 25

Commands .. 26

Commands for Managing a Session .. 26

Commands for Working with the System ... 26

Input and Output Commands ... 27

Vector, Matrix and Array Commands ... 28

Plotting Commands .. 29

M-Files ... 31

The M Files .. 31

Creating and Running Script File ... 31

Example ... 32

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Data - Types .. 34

Data Types Available in MATLAB .. 34

Example ... 35

Data Type Conversion.. 35

Determination of Data Types .. 36

Example ... 37

Operators ... 39

Arithmetic Operators .. 39

Example ... 40

Functions for Arithmetic Operations ... 41

Relational Operators .. 44

Example ... 44

Example ... 45

Logical Operators ... 45

Functions for Logical Operations .. 46

Bitwise Operations ... 48

Example ... 49

Set Operations ... 50

Decisions ... 52

Example: .. 54

Syntax: ... 54

Flow Diagram: .. 55

Example: .. 55

Syntax: ... 56

Example ... 56

Syntax: ... 56

Example: .. 57

Syntax .. 57

Example ... 58

Syntax: ... 58

Example: .. 59

Loops ... 60

While loop .. 61

Syntax: ... 61

Example ... 61

for loop ... 61

Syntax: ... 62

Example 1 .. 62

Example 2 .. 62

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Example 3 .. 63

Nested loops .. 63

Syntax: ... 63

Example ... 64

Loop Control Statements .. 64

Flow Diagram: .. 65

Example: .. 65

Flow Diagram: .. 66

Example: .. 66

Vectors... 68

Row Vectors: .. 68

Column Vectors: ... 68

Referencing the Elements of a Vector .. 69

Vector Operations .. 69

Matrics ... 74

Referencing the Elements of a Matrix .. 74

Deleting a Row or a Column in a Matrix ... 76

Example ... 76

Matrix Operations ... 76

Addition and Subtraction of Matrices .. 77

Example ... 77

Division of Matrices .. 77

Example ... 77

Scalar Operations of Matrices .. 78

Example ... 78

Transpose of a Matrix... 78

Example ... 78

Concatenating Matrices.. 79

Example ... 79

Matrix Multiplication .. 80

Example ... 80

Determinant of a Matrix .. 80

Example ... 80

Inverse of a Matrix .. 81

Example ... 81

Arrays .. 82

Special Arrays in MATLAB ... 82

A Magic Square .. 83

Multidimensional Arrays ... 83

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Example ... 84

Array Functions .. 85

Examples ... 86

Sorting Arrays .. 87

Cell Array ... 87

Where, .. 88

Example ... 88

Accessing Data in Cell Arrays .. 88

Colon Notation ... 90

Example ... 91

Numbers .. 92

Conversion to Various Numeric Data Types .. 92

Example ... 92

Example ... 93

Smallest and Largest Integers .. 93

Example ... 93

Smallest and Largest Floating Point Numbers ... 94

Example ... 94

Strings.. 96

Example ... 96

Rectangular Character Array .. 97

Example ... 97

Example ... 98

Combining Strings into a Cell Array ... 98

Example ... 98

String Functions in MATLAB .. 98

EXAMPLES ... 100

FORMATTING STRINGS.. 100

JOINING STRINGS ... 100

FINDING AND REPLACING STRINGS .. 100

COMPARING STRINGS ... 101

Functions ... 102

Example ... 102

Anonymous Functions .. 103

Example ... 103

Primary and Sub-Functions .. 104

Example ... 104

Nested Functions ... 104

Example ... 105

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Private Functions ... 105

Example ... 105

Global Variables ... 106

Example ... 106

Data Import .. 107

Example 1 .. 107

Example 2 .. 108

Example 3 .. 109

Mathematics is simple .. 109

Low-Level File I/O .. 109

Import Text Data Files with Low-Level I/O .. 110

Example ... 110

Data Export .. 113

Example ... 113

Writing to Diary Files .. 114

Exporting Data to Text Data Files with Low-Level I/O 115

Example ... 115

Plotting ... 116

Adding Title, Labels, Grid Lines and Scaling on the Graph 118

Example ... 118

Drawing Multiple Functions on the Same Graph 119

Example ... 119

Setting Colors on Graph ... 120

Example ... 120

Setting Axis Scales .. 121

Example ... 121

Generating Sub-Plots ... 122

Example ... 122

Graphics .. 124

Drawing Bar Charts .. 124

Example ... 124

Drawing Contours .. 125

Example ... 125

Three Dimensional Plots .. 126

Example ... 127

Algebra .. 128

Solving Basic Algebraic Equations in MATLAB 128

Solving Basic Algebraic Equations in Octave ... 129

Solving Quadratic Equations in MATLAB ... 129

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Solving Quadratic Equations in Octave .. 130

Solving Higher Order Equations in MATLAB .. 130

Solving Higher Order Equations in Octave ... 131

Solving System of Equations in MATLAB ... 131

Solving System of Equations in Octave.. 132

Expanding and Collecting Equations in MATLAB 133

Expanding and Collecting Equations in Octave 133

Factorization and Simplification of Algebraic Expressions 134

Example ... 134

Calculus ... 135

Calculating Limits ... 135

Calculating Limits using Octave ... 136

Verification of Basic Properties of Limits .. 136

Example ... 136

Verification of Basic Properties of Limits using Octave 137

Left and Right Sided Limits .. 138

Example ... 138

Differential .. 140

Example ... 140

Verification of Elementary Rules of Differentiation 140

RULE 1 ... 141

RULE 2 ... 141

RULE 3 ... 141

RULE 4 ... 141

RULE 5 ... 141

RULE 6 ... 141

Example ... 141

Derivatives of Exponential, Logarithmic and Trigonometric Functions ... 143

Example ... 143

Computing Higher Order Derivatives ... 145

Example ... 145

Finding the Maxima and Minima of a Curve ... 146

Example ... 146

Solving Differential Equations .. 149

Integration .. 151

Finding Indefinite Integral Using MATLAB.. 151

Example 1 .. 152

Example 2 .. 152

Finding Definite Integral Using MATLAB .. 154

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Example 1 .. 155

Example 2 .. 155

Polynomials ... 157

Evaluating Polynomials .. 157

Finding the Roots of Polynomials ... 158

Polynomial Curve Fitting .. 158

Example ... 158

Transforms ... 160

The Laplace Transform .. 160

Example ... 160

The Inverse Laplace Transform ... 161

Example ... 161

The Fourier Transforms .. 162

Example ... 162

Inverse Fourier Transforms .. 163

GNU Octave .. 164

MATLAB vs Octave .. 164

COMPATIBLE EXAMPLES .. 164

NON-COMPATIBLE EXAMPLES ... 165

Simulink ... 167

Using Simulink ... 168

Building Models .. 169

Examples ... 169

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Overview

MATLAB(matrix laboratory) is a fourth-generation high-level programming language and interactive

environment for numerical computation, visualization and programming.

MATLAB is developed by MathWorks.

It allows matrix manipulations; plotting of functions and data; implementation of algorithms; creation of user
interfaces; interfacing with programs written in other languages, including C, C++, Java, and Fortran; analyze
data; develop algorithms; and create models and applications.

It has numerous built-in commands and math functions that help you in mathematical calculations, generating
plots and performing numerical methods.

MATLAB's Power of Computational Mathematics
MATLAB is used in every facet of computational mathematics. Following are some commonly used mathematical
calculations where it is used most commonly:

 Dealing with Matrices and Arrays

 2-D and 3-D Plotting and graphics

 Linear Algebra

 Algebraic Equations

 Non-linear Functions

 Statistics

 Data Analysis

 Calculus and Differential Equations

 Numerical Calculations

 Integration

CHAPTER

1

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 Transforms

 Curve Fitting

 Various other special functions

Features of MATLAB
Following are the basic features of MATLAB:

 It is a high-level language for numerical computation, visualization and application development.

 It also provides an interactive environment for iterative exploration, design and problem solving.

 It provides vast library of mathematical functions for linear algebra, statistics, Fourier analysis, filtering,
optimization, numerical integration and solving ordinary differential equations.

 It provides built-in graphics for visualizing data and tools for creating custom plots.

 MATLAB's programming interface gives development tools for improving code quality and maintainability and
maximizing performance.

 It provides tools for building applications with custom graphical interfaces.

 It provides functions for integrating MATLAB based algorithms with external applications and languages such
as C, Java, .NET and Microsoft Excel.

Uses of MATLAB
MATLAB is widely used as a computational tool in science and engineering encompassing the fields of physics,
chemistry, math and all engineering streams. It is used in a range of applications including:

 Signal Processing and Communications

 Image and Video Processing

 Control Systems

 Test and Measurement

 Computational Finance

 Computational Biology

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Environment

Try it Option Online

You really do not need to set up your own environment to start learning MATLAB/Octave programming

language. Reason is very simple, we already have set up the Octave environment online, so that you can execute
all the available examples online at the same time when you are doing your theory work. This gives you confidence
in what you are reading and to check the result with different options. Feel free to modify any example and execute
it online.

Try following example using Try it option available at the top right corner of the below sample code box:

x =[12345678910];

y1 =[.16.08.04.02.013.007.004.002.001.0008];

y2 =[.16.07.03.01.008.003.0008.0003.00007.00002];

semilogy(x,y1,'-bo;y1;',x,y2,'-kx;y2;');

title('Plot title');

xlabel('X Axis');

ylabel('Y Axis');

print-deps graph.eps

For most of the examples given in this tutorial, you will find Try it option, so just make use of it and enjoy your
learning.

Local Environment Setup
If you are still willing to set up your environment, let me tell you a secret, setting up MATLAB environment is a
matter of few clicks. However, you need to download the installer from here:

MathWorks provides the licensed product, a trial version and a student version as well. You need to log into the
site and wait a little for their approval.

Once you get the download link, as I said, it is a matter of few clicks:

CHAPTER

2

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
https://www.mathworks.com/downloads/web_downloads/

TUTORIALS POINT

Simply Easy Learning

Understanding the MATLAB Environment:
You can launch MATLAB development IDE from the icon created on your desktop. The main working window in
MATLAB is called the desktop. When you start MATLAB, the desktop appears in its default layout:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

The desktop has the following panels:

 Current Folder - This panel allows you to access your project folders and files.

 Command Window - This is the main area where you enter commands at the command line, indicated by

the command prompt (>>).

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 Workspace - The workspace shows all the variables you create and/or import from files.

 Command History - This panels shows or rerun commands that you entered at the command line.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Set up GNU Octave
If you are willing to use Octave on your machine (Linux, BSD, OS X or Windows), then kindly download latest
version from Download GNU Octave. You can check given installation instruction for your machine.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.gnu.org/software/octave/download.html

TUTORIALS POINT

Simply Easy Learning

Basic Syntax

MATLABenvironment behaves like a super-complex calculator. You can enter commands at the >>

command prompt.

MATLAB is an interpreted environment. In other words, you give a command and MATLAB executes it right away.

Hands on Practice
Type a valid expression, for example,

5+5

And press ENTER

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result returned is:

ans = 10

Let us take up few more examples:

3^2 %3 raised to the power of 2

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result returned is:

ans = 9

Another example,

sin(pi /2) % sine of angle 90o

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result returned is:

ans = 1

Another example,

7/0 %Divideby zero

CHAPTER

3

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result returned is:

ans = Inf

warning: division by zero

Another example,

732*20.3

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result returned is:

ans = 1.4860e+04

MATLAB provides some special expressions for some mathematical symbols, like pi for π, Inf for ∞, i (and j) for √-1
etc. Nan stands for 'not a number'.

Use of Semicolon (;) in MATLAB
Semicolon (;) indicates end of statement. However, if you want to suppress and hide the MATLAB output for an
expression, add a semicolon after the expression.

For example,

x =3;

y = x +5

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result returned is:

y = 8

Adding Comments
The percent symbol (%) is used for indicating a comment line. For example,

x =9 % assign the value 9 to x

You can also write a block of comments using the block comment operators % { and % }.

The MATLAB editor includes tools and context menu items to help you add, remove, or change the format of
comments.

Commonly used Operators and Special Characters
MATLAB supports the following commonly used operators and special characters:

Operator Purpose

+ Plus; addition operator.

- Minus; subtraction operator.

* Scalar and matrix multiplication operator.

.* Array multiplication operator.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

^ Scalar and matrix exponentiation operator.

.^ Array exponentiation operator.

\ Left-division operator.

/ Right-division operator.

.\ Array left-division operator.

./ Array right-division operator.

: Colon; generates regularly spaced elements and represents an entire row or column.

() Parentheses; encloses function arguments and array indices; overrides precedence.

[] Brackets; enclosures array elements.

. Decimal point.

… Ellipsis; line-continuation operator

, Comma; separates statements and elements in a row

; Semicolon; separates columns and suppresses display.

% Percent sign; designates a comment and specifies formatting.

_ Quote sign and transpose operator.

._ Nonconjugated transpose operator.

= Assignment operator.

Special Variables and Constants
MATLAB supports the following special variables and constants:

Name Meaning

Ans Most recent answer.

Eps Accuracy of floating-point precision.

i,j The imaginary unit √-1.

Inf Infinity.

NaN Undefined numerical result (not a number).

Pi The number π

Naming Variables
Variable names consist of a letter followed by any number of letters, digits or underscore.

MATLAB is case-sensitive.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Variable names can be of any length, however, MATLAB uses only first N characters, where N is given by the
function namelengthmax.

Saving Your Work
The save command is used for saving all the variables in the workspace, as a file with .mat extension, in the

current directory.

For example,

save myfile

You can reload the file anytime later using the load command.

load myfile

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Variables

In MATLAB environment, every variable is an array or matrix.

You can assign variables in a simple way. For example,

x =3 % defining x and initializing it with a value

MATLAB will execute the above statement and return the following result:

x =

 3

It creates a 1-by-1 matrix named x and stores the value 3 in its element. Let us check another example,

x = sqrt(16) % defining x and initializing it with an expression

MATLAB will execute the above statement and return the following result:

x =

 4

Please note that:

 Once a variable is entered into the system, you can refer to it later.

 Variables must have values before they are used.

 When an expression returns a result that is not assigned to any variable, the system assigns it to a variable
named ans, which can be used later.

For example,

sqrt(78)

MATLAB will execute the above statement and return the following result:

ans =

 8.8318

CHAPTER

4

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

You can use this variable ans:

9876/ans

MATLAB will execute the above statement and return the following result:

ans =

 1.1182e+03

Let's look at another example:

x =7*8;

y = x *7.89

MATLAB will execute the above statement and return the following result:

y =

 441.8400

Multiple Assignments
You can have multiple assignments on the same line. For example,

a =2; b =7; c = a * b

MATLAB will execute the above statement and return the following result:

c =

 14

I have forgotten the Variables!
The who command displays all the variable names you have used.

who

MATLAB will execute the above statement and return the following result:

Your variables are:

a ans b c x y

The whos command displays little more about the variables:

 Variables currently in memory

 Type of each variables

 Memory allocated to each variable

 Whether they are complex variables or not

whos

MATLAB will execute the above statement and return the following result:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 Name Size Bytes Class Attributes

 a 1x1 8 double

 ans 1x1 8 double

 b 1x1 8 double

 c 1x1 8 double

 x 1x1 8 double

 y 1x1 8 double

The clear command deletes all (or the specified) variable(s) from the memory.

clear x % it will delete x, won't display anything

clear % it will delete all variables in the workspace

 % peacefully and unobtrusively

Long Assignments
Long assignments can be extended to another line by using an ellipses (...). For example,

initial_velocity =0;

acceleration =9.8;

time =20;

final_velocity = initial_velocity ...

+ acceleration * time

MATLAB will execute the above statement and return the following result:

final_velocity =

 196

The format Command
By default, MATLAB displays numbers with four decimal place values. This is known as short format.
However, if you want more precision, you need to use the format command.
The format long command displays 16 digits after decimal.

For example:

format long

x =7+10/3+5^1.2

MATLAB will execute the above statement and return the following result:

x =

 17.231981640639408

Another example,

format short

x =7+10/3+5^1.2

MATLAB will execute the above statement and return the following result:

x =

 17.2320

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

The format bank command rounds numbers to two decimal places. For example,

format bank

daily_wage =177.45;

weekly_wage = daily_wage *6

MATLAB will execute the above statement and return the following result:

weekly_wage =

 1064.70

MATLAB displays large numbers using exponential notation.

The format short e command allows displaying in exponential form with four decimal places plus the exponent.

For example,

format short e

4.678*4.9

MATLAB will execute the above statement and return the following result:

ans =

 2.2922e+01

The format long e command allows displaying in exponential form with four decimal places plus the exponent. For

example,

format long e

x = pi

MATLAB will execute the above statement and return the following result:

x =

 3.141592653589793e+00

The format rat command gives the closest rational expression resulting from a calculation. For example,

format rat

4.678*4.9

MATLAB will execute the above statement and return the following result:

ans =

 2063/90

Creating Vectors
A vector is a one-dimensional array of numbers. MATLAB allows creating two types of vectors:

 Row vectors

 Column vectors

Row vectors are created by enclosing the set of elements in square brackets, using space or comma to delimit the

elements.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

For example,

r =[7891011]

MATLAB will execute the above statement and return the following result:

r =

 Columns 1 through 4

 7 8 9 10

 Column 5

 11

Another example,

r =[7891011];

t =[2,3,4,5,6];

res = r + t

MATLAB will execute the above statement and return the following result:

res =

 Columns 1 through 4

 9 11 13 15

 Column 5

 17

Column vectors are created by enclosing the set of elements in square brackets, using semicolon(;) to delimit the

elements.

c =[7;8;9;10;11]

MATLAB will execute the above statement and return the following result:

c =

 7

 8

 9

 10

 11

Creating Matrices
A matrix is a two-dimensional array of numbers.

In MATLAB, a matrix is created by entering each row as a sequence of space or comma separated elements, and
end of a row is demarcated by a semicolon. For example, let us create a 3-by-3 matrix as:

m =[123;456;789]

MATLAB will execute the above statement and return the following result:

m =

 1 2 3

 4 5 6

 7 8 9

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Commands

MATLAB is an interactive program for numerical computation and data visualization. You can enter a

command by typing it at the MATLAB prompt '>>' on the Command Window.

In this section, we will provide lists of commonly used general MATLAB commands.

Commands for Managing a Session
MATLAB provides various commands for managing a session. The following table provides all such commands:

Command Purpose

clc Clears command window.

clear Removes variables from memory.

exist Checks for existence of file or variable.

global Declares variables to be global.

help Searches for a help topic.

lookfor Searches help entries for a keyword.

Quit Stops MATLAB.

Who Lists current variables.

Whos Lists current variables (long display).

Commands for Working with the System
MATLAB provides various useful commands for working with the system, like saving the current work in the
workspace as a file and loading the file later.

It also provides various commands for other system-related activities like, displaying date, listing files in the
directory, displaying current directory, etc.

The following table displays some commonly used system-related commands:

CHAPTER

5

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Command Purpose

Cd Changes current directory.

Date Displays current date.

Delete Deletes a file.

Diary Switches on/off diary file recording.

Dir Lists all files in current directory.

Load Loads workspace variables from a file.

Path Displays search path.

Pwd Displays current directory.

Save Saves workspace variables in a file.

Type Displays contents of a file.

What Lists all MATLAB files in the current directory.

wklread Reads .wk1 spreadsheet file.

Input and Output Commands
MATLAB provides the following input and output related commands:

Command Purpose

Disp Displays contents of an array or string.

Fscanf Read formatted data from a file.

Format Controls screen-display format.

Fprintf Performs formatted writes to screen or file.

Input Displays prompts and waits for input.

; Suppresses screen printing.

The fscanf and fprintf commands behave like C scanf and printf functions. They support the following format

codes:

Format Code Purpose

%s Format as a string.

%d Format as an integer.

%f Format as a floating point value.

%e Format as a floating point value in scientific notation.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

%g Format in the most compact form: %f or %e.

\n Insert a new line in the output string.

\t Insert a tab in the output string.

The format function has the following forms used for numeric display:

Format Function Display up to

format short Four decimal digits (default).

format long 16 decimal digits.

format short e Five digits plus exponent.

format long e 16 digits plus exponents.

format bank Two decimal digits.

format + Positive, negative, or zero.

format rat Rational approximation.

format compact Suppresses some line feeds.

format loose Resets to less compact display mode.

Vector, Matrix and Array Commands
The following table shows various commands used for working with arrays, matrices and vectors:

Command Purpose

Cat Concatenates arrays.

Find Finds indices of nonzero elements.

Length Computes number of elements.

linspace Creates regularly spaced vector.

logspace Creates logarithmically spaced vector.

Max Returns largest element.

Min Returns smallest element.

Prod Product of each column.

reshape Changes size.

Size Computes array size.

Sort Sorts each column.

Sum Sums each column.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Eye Creates an identity matrix.

Ones Creates an array of ones.

Zeros Creates an array of zeros.

Cross Computes matrix cross products.

Dot Computes matrix dot products.

Det Computes determinant of an array.

Inv Computes inverse of a matrix.

Pinv Computes pseudoinverse of a matrix.

Rank Computes rank of a matrix.

Rref Computes reduced row echelon form.

Cell Creates cell array.

celldisp Displays cell array.

cellplot Displays graphical representation of cell array.

num2cell Converts numeric array to cell array.

Deal Matches input and output lists.

Iscell Identifies cell array.

Plotting Commands
MATLAB provides numerous commands for plotting graphs. The following table shows some of the commonly
used commands for plotting:

Command Purpose

axis Sets axis limits.

fplot Intelligent plotting of functions.

grid Displays gridlines.

plot Generates xy plot.

print Prints plot or saves plot to a file.

title Puts text at top of plot.

xlabel Adds text label to x-axis.

ylabel Adds text label to y-axis.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

axes Creates axes objects.

close Closes the current plot.

close all Closes all plots.

figure Opens a new figure window.

gtext Enables label placement by mouse.

hold Freezes current plot.

legend Legend placement by mouse.

refresh Redraws current figure window.

set Specifies properties of objects such as axes.

subplot Creates plots in subwindows.

text Places string in figure.

bar Creates bar chart.

loglog Creates log-log plot.

polar Creates polar plot.

Creates semilog plot. (logarithmic abscissa).

semilogy Creates semilog plot. (logarithmic ordinate).

stairs Creates stairs plot.

stem Creates stem plot.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

M-Files

So far, we have used MATLAB environment as a calculator. However, MATLAB is also a powerful

programming language, as well as an interactive computational environment.

In previous chapters, you have learned how to enter commands from the MATLAB command prompt. MATLAB
also allows you to write series of commands into a file and execute the file as complete unit, like writing a function
and calling it.

The M Files
MATLAB allows writing two kinds of program files:

 Scripts - script files are program files with .m extension. In these files, you write series of commands, which

you want to execute together. Scripts do not accept inputs and do not return any outputs. They operate on
data in the workspace.

 Functions - functions files are also program files with .m extension. Functions can accept inputs and return

outputs. Internal variables are local to the function.
You can use the MATLAB Editor or any other text editor to create your .m files. In this section, we will discuss

the script files. A script file contains multiple sequential lines of MATLAB commands and function calls. You
can run a script by typing its name at the command line.

Creating and Running Script File
To create scripts files, you need to use a text editor. You can open the MATLAB editor in two ways:

 Using the command prompt

 Using the IDE

If you are using the command prompt, type edit in the command prompt. This will open the editor. You can directly
type edit and then the filename (with .m extension)

edit

Or

edit <filename>

CHAPTER

6

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

The above command will create the file in default MATLAB directory. If you want to store all program files in a
specific folder, then you will have to provide the entire path.

Let us create a folder named progs. Type the following commands at the command prompt(>>):

mkdir progs % create directory progs under default directory

chdir progs % changing the current directory to progs

edit prog1.m % creating an m file named prog1.m

If you are creating the file for first time, MATLAB prompts you to confirm it. Click Yes.

Alternatively, if you are using the IDE, choose NEW -> Script. This also opens the editor and creates a file named
Untitled. You can name and save the file after typing the code.

Type the following code in the editor:

NoOfStudents=6000;

TeachingStaff=150;

NonTeachingStaff=20;

Total=NoOfStudents+TeachingStaff...

+NonTeachingStaff;

disp(Total);

After creating and saving the file, you can run it in two ways:

 Clicking the Run button on the editor window or

 Just typing the filename (without extension) in the command prompt: >> prog1

The command window prompt displays the result:

6170

Example

Create a script file, and type the following code:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

a =5; b =7;

c = a + b

d = c + sin(b)

e =5* d

f = exp(-d)

When the above code is compiled and executed, it produces the following result:

c =

 12

d =

 12.6570

e =

 63.2849

f =

 3.1852e-06

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Data - Types

MATLAB does not require any type declaration or dimension statements. Whenever MATLAB

encounters a new variable name, it creates the variable and allocates appropriate memory space.

If the variable already exists, then MATLAB replaces the original content with new content and allocates new
storage space, where necessary.

For example,

Total=42

The above statement creates a 1-by-1 matrix named 'Total' and stores the value 42 in it.

Data Types Available in MATLAB
MATLAB provides 15 fundamental data types. Every data type stores data that is in the form of a matrix or array.
The size of this matrix or array is a minimum of 0-by-0 and this can grow up to a matrix or array of any size.

The following table shows the most commonly used data types in MATLAB:

Data Type Description

int8 8-bit signed integer

uint8 8-bit unsigned integer

int16 16-bit signed integer

uint16 16-bit unsigned integer

int32 32-bit signed integer

uint32 32-bit unsigned integer

int64 64-bit signed integer

uint64 64-bit unsigned integer

CHAPTER

7

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

single single precision numerical data

double double precision numerical data

logical logical values of 1 or 0, represent true and false respectively

char character data (strings are stored as vector of characters)

cell array
array of indexed cells, each capable of storing an array of a different dimension and
data type

structure
C-like structures, each structure having named fields capable of storing an array of a
different dimension and data type

function handle pointer to a function

user classes objects constructed from a user-defined class

java classes objects constructed from a Java class

Example
Create a script file with the following code:

str ='Hello World!'

n =2345

d =double(n)

un = uint32(789.50)

rn =5678.92347

c = int32(rn)

When the above code is compiled and executed, it produces the following result:

str =

Hello World!

n =

 2345

d =

 2345

un =

 790

rn =

 5.6789e+03

c =

 5679

Data Type Conversion
MATLAB provides various functions for converting from one data type to another. The following table shows the
data type conversion functions:

Function Purpose

char Convert to character array (string)

int2str Convert integer data to string

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

mat2str Convert matrix to string

num2str Convert number to string

str2double Convert string to double-precision value

str2num Convert string to number

native2unicode Convert numeric bytes to Unicode characters

unicode2native Convert Unicode characters to numeric bytes

base2dec Convert base N number string to decimal number

bin2dec Convert binary number string to decimal number

dec2base Convert decimal to base N number in string

dec2bin Convert decimal to binary number in string

dec2hex Convert decimal to hexadecimal number in string

hex2dec Convert hexadecimal number string to decimal number

hex2num Convert hexadecimal number string to double-precision number

num2hex Convert singles and doubles to IEEE hexadecimal strings

cell2mat Convert cell array to numeric array

cell2struct Convert cell array to structure array

cellstr Create cell array of strings from character array

mat2cell Convert array to cell array with potentially different sized cells

num2cell Convert array to cell array with consistently sized cells

struct2cell Convert structure to cell array

Determination of Data Types
MATLAB provides various functions for identifying data type of a variable.

Following table provides the functions for determining the data type of a variable:

Function Purpose

is Detect state

isa Determine if input is object of specified class

iscell Determine whether input is cell array

iscellstr Determine whether input is cell array of strings

ischar Determine whether item is character array

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

isfield Determine whether input is structure array field

isfloat Determine if input is floating-point array

ishghandle True for Handle Graphics object handles

isinteger Determine if input is integer array

isjava Determine if input is Java object

islogical Determine if input is logical array

isnumeric Determine if input is numeric array

isobject Determine if input is MATLAB object

isreal Check if input is real array

isscalar Determine whether input is scalar

isstr Determine whether input is character array

isstruct Determine whether input is structure array

isvector Determine whether input is vector

class Determine class of object

validateattributes Check validity of array

whos List variables in workspace, with sizes and types

Example
Create a script file with the following code:

x =3

isinteger(x)

isfloat(x)

isvector(x)

isscalar(x)

isnumeric(x)

x =23.54

isinteger(x)

isfloat(x)

isvector(x)

isscalar(x)

isnumeric(x)

x =[123]

isinteger(x)

isfloat(x)

isvector(x)

isscalar(x)

x ='Hello'

isinteger(x)

isfloat(x)

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

isvector(x)

isscalar(x)

isnumeric(x)

When you run the file, it produces the following result:

x =

 3

ans =

 0

ans =

 1

ans =

 1

ans =

 1

ans =

 1

x =

 23.5400

ans =

 0

ans =

 1

ans =

 1

ans =

 1

ans =

 1

x =

 1 2 3

ans =

 0

ans =

 1

ans =

 1

ans =

 0

x =

Hello

ans =

 0

ans =

 0

ans =

 1

ans =

 0

ans =

 0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical manipulations.

MATLAB is designed to operate primarily on whole matrices and arrays. Therefore, operators in MATLAB work
both on scalar and non-scalar data. MATLAB allows the following types of elementary operations:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operations

 Set Operations

Arithmetic Operators
MATLAB allows two different types of arithmetic operations:

 Matrix arithmetic operations

 Array arithmetic operations

Matrix arithmetic operations are same as defined in linear algebra. Array operations are executed element by
element, both on one-dimensional and multidimensional array.

The matrix operators and array operators are differentiated by the period (.) symbol. However, as the addition and
subtraction operation is same for matrices and arrays, the operator is same for both cases. The following table
gives brief description of the operators:

Operator Description

+
Addition or unary plus. A+B adds A and B. A and B must have the same size, unless one is a
scalar. A scalar can be added to a matrix of any size.

-
Subtraction or unary minus. A-B subtracts B from A. A and B must have the same size, unless
one is a scalar. A scalar can be subtracted from a matrix of any size.

CHAPTER

8

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

*

Matrix multiplication. C = A*B is the linear algebraic product of the matrices A and B. More
precisely,

For nonscalar A and B, the number of columns of A must equal the number of rows of B. A scalar
can multiply a matrix of any size.

.*
Array multiplication. A.*B is the element-by-element product of the arrays A and B. A and B must
have the same size, unless one of them is a scalar.

/ Slash or matrix right division. B/A is roughly the same as B*inv(A). More precisely, B/A = (A'\B')'.

./
Array right division. A./B is the matrix with elements A(i,j)/B(i,j). A and B must have the same size,
unless one of them is a scalar.

\

Backslash or matrix left division. If A is a square matrix, A\B is roughly the same as inv(A)*B,
except it is computed in a different way. If A is an n-by-n matrix and B is a column vector with n
components, or a matrix with several such columns, then X = A\B is the solution to the
equation AX = B. A warning message is displayed if A is badly scaled or nearly singular.

.\
Array left division. A.\B is the matrix with elements B(i,j)/A(i,j). A and B must have the same size,
unless one of them is a scalar.

^

Matrix power. X^p is X to the power p, if p is a scalar. If p is an integer, the power is computed by
repeated squaring. If the integer is negative, X is inverted first. For other values of p, the
calculation involves eigenvalues and eigenvectors, such that if [V,D] = eig(X), then X^p =
V*D.^p/V.

.^
Array power. A.^B is the matrix with elements A(i,j) to the B(i,j) power. A and B must have the
same size, unless one of them is a scalar.

'
Matrix transpose. A' is the linear algebraic transpose of A. For complex matrices, this is the
complex conjugate transpose.

.'
Array transpose. A.' is the array transpose of A. For complex matrices, this does not involve
conjugation.

Example
The following examples show use of arithmetic operators on scalar data. Create a script file with the following
code:

a =10;

b =20;

c = a + b

d = a - b

e = a * b

f = a / b

g = a \ b

x =7;

y =3;

z = x ^ y

When you run the file, it produces the following result:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

c =

 30

d =

 -10

e =

 200

f =

 0.5000

g =

 2

z =

 343

Functions for Arithmetic Operations
Apart from the above-mentioned arithmetic operators, MATLAB provides the following commands/functions used
for similar purpose:

Function Description

uplus(a) Unary plus; increments by the amount a

plus (a,b) Plus; returns a + b

uminus(a) Unary minus; decrements by the amount a

minus(a, b) Minus; returns a – b

times(a, b) Array multiply; returns a.*b

mtimes(a, b) Matrix multiplication; returns a* b

rdivide(a, b) Right array division; returns a ./ b

ldivide(a, b) Left array division; returns a.\ b

mrdivide(A, B) Solve systems of linear equations xA = B for x

mldivide(A, B) Solve systems of linear equations Ax = B for x

power(a, b) Array power; returns a.^b

mpower(a, b) Matrix power; returns a ^ b

cumprod(A)

Cumulative product; returns an array the same size as the array A containing
the cumulative product.

 If A is a vector, then cumprod(A) returns a vector containing the cumulative
product of the elements of A.

 If A is a matrix, then cumprod(A) returns a matrix containing the cumulative
products for each column of A.

 If A is a multidimensional array, then cumprod(A) acts along the first
nonsingleton dimension.

cumprod(A, dim) Returns the cumulative product along dimension dim.

cumsum(A)

Cumulative sum; returns an array A containing the cumulative sum.

 If A is a vector, then cumsum(A) returns a vector containing the cumulative

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

sum of the elements of A.

 If A is a matrix, then cumsum(A) returns a matrix containing the cumulative
sums for each column of A.

 If A is a multidimensional array, then cumsum(A) acts along the first
nonsingleton dimension.

cumsum(A, dim) returns the cumulative sum of the elements along dimension dim.

diff(X)

Differences and approximate derivatives; calculates differences between
adjacent elements of X.

 If X is a vector, then diff(X) returns a vector, one element shorter than X, of
differences between adjacent elements: [X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)]

 If X is a matrix, then diff(X) returns a matrix of row differences: [X(2:m,:)-X(1:m-
1,:)]

diff(X,n) Applies diff recursively n times, resulting in the nth difference.

diff(X,n,dim)
It is the nth difference function calculated along the dimension specified by
scalar dim. If order n equals or exceeds the length of dimension dim, diff
returns an empty array.

prod(A)

Product of array elements; returns the product of the array elements of A.

 If A is a vector, then prod(A) returns the product of the elements.

 If A is a nonempty matrix, then prod(A) treats the columns of A as vectors and
returns a row vector of the products of each column.

 If A is an empty 0-by-0 matrix, prod(A) returns 1.

 If A is a multidimensional array, then prod(A) acts along the first nonsingleton
dimension and returns an array of products. The size of this dimension reduces
to 1 while the sizes of all other dimensions remain the same.

The prod function computes and returns B as single if the input, A, is single.
For all other numeric and logical data types, prod computes and returns B as
double

prod(A,dim)
Returns the products along dimension dim. For example, if A is a matrix,
prod(A,2) is a column vector containing the products of each row.

prod(___,datatype) multiplies in and returns an array in the class specified by datatype.

sum(A)

 Sum of array elements; returns sums along different dimensions of an array. If
A is floating point, that is double or single, B is accumulated natively, that is in
the same class as A, and B has the same class as A. If A is not floating point,
B is accumulated in double and B has class double.

 If A is a vector, sum(A) returns the sum of the elements.

 If A is a matrix, sum(A) treats the columns of A as vectors, returning a row

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

vector of the sums of each column.

 If A is a multidimensional array, sum(A) treats the values along the first non-
singleton dimension as vectors, returning an array of row vectors.

sum(A,dim) Sums along the dimension of A specified by scalar dim.

sum(..., 'double')

sum(..., dim,'double')

Perform additions in double-precision and return an answer of type double,
even if A has data type single or an integer data type. This is the default for
integer data types.

sum(..., 'native')

sum(..., dim,'native')
Perform additions in the native data type of A and return an answer of the
same data type. This is the default for single and double.

ceil(A)
Round toward positive infinity; rounds the elements of A to the nearest integers
greater than or equal to A.

fix(A) Round toward zero

floor(A)
Round toward negative infinity; rounds the elements of A to the nearest
integers less than or equal to A.

idivide(a, b)

idivide(a, b,'fix')
Integer division with rounding option; is the same as a./b except that fractional
quotients are rounded toward zero to the nearest integers.

idivide(a, b, 'round') Fractional quotients are rounded to the nearest integers.

idivide(A, B, 'floor')
Fractional quotients are rounded toward negative infinity to the nearest
integers.

idivide(A, B, 'ceil') Fractional quotients are rounded toward infinity to the nearest integers.

mod (X,Y)

Modulus after division; returns X - n.*Y where n = floor(X./Y). If Y is not an
integer and the quotient X./Y is within roundoff error of an integer, then n is that
integer. The inputs X and Y must be real arrays of the same size, or real
scalars (provided Y ~=0).

Please note:

 mod(X,0) is X

 mod(X,X) is 0

 mod(X,Y) for X~=Y and Y~=0 has the same sign as Y

rem (X,Y)

Remainder after division; returns X - n.*Y where n = fix(X./Y). If Y is not an
integer and the quotient X./Y is within roundoff error of an integer, then n is that
integer. The inputs X and Y must be real arrays of the same size, or real
scalars(provided Y ~=0).

Please note that:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 rem(X,0) is NaN

 rem(X,X) for X~=0 is 0

 rem(X,Y) for X~=Y and Y~=0 has the same sign as X.

round(X)

Round to nearest integer; rounds the elements of X to the nearest integers.
Positive elements with a fractional part of 0.5 round up to the nearest positive
integer. Negative elements with a fractional part of -0.5 round down to the
nearest negative integer.

Relational Operators
Relational operators can also work on both scalar and non-scalar data. Relational operators for arrays perform
element-by-element comparisons between two arrays and return a logical array of the same size, with elements
set to logical 1 (true) where the relation is true and elements set to logical 0 (false) where it is not.

The following table shows the relational operators available in MATLAB:

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

Example
Create a script file and type the following code:

a =100;

b =200;

if(a >= b)

max = a

else

max = b

end

When you run the file, it produces following result:

max =

 200

Apart from the above-mentioned relational operators, MATLAB provides the following commands/functions used
for the same purpose:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Function Description

eq(a, b) Tests whether a is equal to b

ge(a, b) Tests whether a is greater than or equal to b

gt(a, b) Tests whether a is greater than b

le(a, b) Tests whether a is less than or equal to b

lt(a, b) Tests whether a is less than b

ne(a, b) Tests whether a is not equal to b

isequal Tests arrays for equality

isequaln Tests arrays for equality, treating NaN values as equal

Example
Create a script file and type the following code:

% comparing two values

a =100;

b =200;

if(ge(a,b))

max = a

else

max = b

end

% comparing two different values

a =340;

b =520;

if(le(a, b))

disp(' a is either less than or equal to b')

else

disp(' a is greater than b')

end

When you run the file, it produces the following result:

max =

 200

 a is either less than or equal to b

Logical Operators
MATLAB offers two types of logical operators and functions:

 Element-wise - these operators operate on corresponding elements of logical arrays.

 Short-circuit - these operators operate on scalar, logical expressions.

Element-wise logical operators operate element-by-element on logical arrays. The symbols &, |, and ~ are the
logical array operators AND, OR, and NOT.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Short-circuit logical operators allow short-circuiting on logical operations. The symbols && and || are the logical
short-circuit operators AND and OR.

Example
Create a script file and type the following code:

a =5;

b =20;

if(a && b)

 disp('Line 1 - Condition is true');

end

if(a || b)

 disp('Line 2 - Condition is true');

end

% lets change the value of a and b

 a =0;

 b =10;

if(a && b)

 disp('Line 3 - Condition is true');

else

 disp('Line 3 - Condition is not true');

end

if(~(a && b))

 disp('Line 4 - Condition is true');

end

When you run the file, it produces following result:

Line 1 - Condition is true

Line 2 - Condition is true

Line 3 - Condition is not true

Line 4 - Condition is true

Functions for Logical Operations
Apart from the above-mentioned logical operators, MATLAB provides the following commands or functions used
for the same purpose:

Function Description

and(A, B)

Finds logical AND of array or scalar inputs; performs a logical AND of all input arrays
A, B, etc. and returns an array containing elements set to either logical 1 (true) or
logical 0 (false). An element of the output array is set to 1 if all input arrays contain a
nonzero element at that same array location. Otherwise, that element is set to 0.

not(A)

Finds logical NOT of array or scalar input; performs a logical NOT of input array A and
returns an array containing elements set to either logical 1 (true) or logical 0 (false). An
element of the output array is set to 1 if the input array contains a zero value element
at that same array location. Otherwise, that element is set to 0.

or(A, B)

Finds logical OR of array or scalar inputs; performs a logical OR of all input arrays A,
B, etc. and returns an array containing elements set to either logical 1 (true) or logical 0
(false). An element of the output array is set to 1 if any input arrays contain a nonzero
element at that same array location. Otherwise, that element is set to 0.

xor(A, B)
Logical exclusive-OR; performs an exclusive OR operation on the corresponding
elements of arrays A and B. The resulting element C(i,j,...) is logical true (1) if A(i,j,...)

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

or B(i,j,...), but not both, is nonzero.

all(A)

Determine if all array elements of array A are nonzero or true.

 If A is a vector, all(A) returns logical 1 (true) if all the elements are nonzero and returns
logical 0 (false) if one or more elements are zero.

 If A is a nonempty matrix, all(A) treats the columns of A as vectors, returning a row
vector of logical 1's and 0's.

 If A is an empty 0-by-0 matrix, all(A) returns logical 1 (true).

 If A is a multidimensional array, all(A) acts along the first nonsingleton dimension and
returns an array of logical values. The size of this dimension reduces to 1 while the
sizes of all other dimensions remain the same.

all(A, dim) Tests along the dimension of A specified by scalar dim.

any(A)

Determine if any array elements are nonzero; tests whether any of the elements along
various dimensions of an array is a nonzero number or is logical 1 (true). The any
function ignores entries that are NaN (Not a Number).

 If A is a vector, any(A) returns logical 1 (true) if any of the elements of A is a nonzero
number or is logical 1 (true), and returns logical 0 (false) if all the elements are zero.

 If A is a nonempty matrix, any(A) treats the columns of A as vectors, returning a row
vector of logical 1's and 0's.

 If A is an empty 0-by-0 matrix, any(A) returns logical 0 (false).

 If A is a multidimensional array, any(A) acts along the first nonsingleton dimension and
returns an array of logical values. The size of this dimension reduces to 1 while the
sizes of all other dimensions remain the same.

any(A,dim) Tests along the dimension of A specified by scalar dim.

False Logical 0 (false)

false(n) is an n-by-n matrix of logical zeros

false(m, n) is an m-by-n matrix of logical zeros.

false(m, n, p, ...) is an m-by-n-by-p-by-... array of logical zeros.

false(size(A)) is an array of logical zeros that is the same size as array A.

false(...,'like',p) is an array of logical zeros of the same data type and sparsity as the logical array p.

ind = find(X)

Find indices and values of nonzero elements; locates all nonzero elements of array X,
and returns the linear indices of those elements in a vector. If X is a row vector, then
the returned vector is a row vector; otherwise, it returns a column vector. If X contains
no nonzero elements or is an empty array, then an empty array is returned.

ind = find(X, k)
Returns at most the first k indices corresponding to the nonzero entries of X. k must be
a positive integer, but it can be of any numeric data type.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

ind = find(X, k, 'first')

ind = find(X, k, 'last') returns at most the last k indices corresponding to the nonzero entries of X.

[row,col] = find(X, ...)
Returns the row and column indices of the nonzero entries in the matrix X. This syntax
is especially useful when working with sparse matrices. If X is an N-dimensional array
with N > 2, col contains linear indices for the columns.

[row,col,v] = find(X, ...)
Returns a column or row vector v of the nonzero entries in X, as well as row and
column indices. If X is a logical expression, then v is a logical array. Output v contains
the non-zero elements of the logical array obtained by evaluating the expression X.

islogical(A)
Determine if input is logical array; returns true if A is a logical array and false otherwise.
It also returns true if A is an instance of a class that is derived from the logical class.

logical(A)
Convert numeric values to logical; returns an array that can be used for logical indexing
or logical tests.

True Logical 1 (true)

true(n) is an n-by-n matrix of logical ones.

true(m, n) is an m-by-n matrix of logical ones.

true(m, n, p, ...) is an m-by-n-by-p-by-... array of logical ones.

true(size(A)) is an array of logical ones that is the same size as array A.

true(...,'like', p) is an array of logical ones of the same data type and sparsity as the logical array p.

Bitwise Operations
Bitwise operator works on bits and performs bit-by-bit operation. The truth tables for &, |, and ^ are as follows:

P Q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; Now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

MATLAB provides various functions for bit-wise operations like 'bitwise and', 'bitwise or' and 'bitwise not'
operations, shift operation, etc.

The following table shows the commonly used bitwise operations:

Function Purpose

bitand(a, b) Bit-wise AND of integers a and b

bitcmp(a) Bit-wise complement of a

bitget(a,pos) Get bit at specified position pos, in the integer array a

bitor(a, b) Bit-wise OR of integers a and b

bitset(a, pos) Set bit at specific location pos of a

bitshift(a, k)
Returns a shifted to the left by k bits, equivalent to multiplying by 2k. Negative values
of k correspond to shifting bits right or dividing by 2|k| and rounding to the nearest
integer towards negative infinite. Any overflow bits are truncated.

bitxor(a, b) Bit-wise XOR of integers a and b

Swapbytes Swap byte ordering

Example
Create a script file and type the following code:

a = 60; % 60 = 0011 1100

b = 13; % 13 = 0000 1101

c = bitand(a, b) % 12 = 0000 1100

c = bitor(a, b) % 61 = 0011 1101

c = bitxor(a, b) % 49 = 0011 0001

c = bitshift(a, 2) % 240 = 1111 0000 */

c = bitshift(a,-2) % 15 = 0000 1111 */

When you run the file, it displays the following result:

c =

 12

c =

 61

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

c =

 49

c =

 240

c =

 15

Set Operations
MATLAB provides various functions for set operations, like union, intersection and testing for set membership, etc.

The following table shows some commonly used set operations:

Function Description

intersect(A,B)
Set intersection of two arrays; returns the values common to both A and B. The values
returned are in sorted order.

intersect(A,B,'rows')
Treats each row of A and each row of B as single entities and returns the rows
common to both A and B. The rows of the returned matrix are in sorted order.

ismember(A,B)
Returns an array the same size as A, containing 1 (true) where the elements of A are
found in B. Elsewhere, it returns 0 (false).

ismember(A,B,'rows')
Treats each row of A and each row of B as single entities and returns a vector
containing 1 (true) where the rows of matrix A are also rows of B. Elsewhere, it returns
0 (false).

issorted(A)
Returns logical 1 (true) if the elements of A are in sorted order and logical 0 (false)
otherwise. Input A can be a vector or an N-by-1 or 1-by-N cell array of strings. A is
considered to be sorted if A and the output of sort(A) are equal.

issorted(A, 'rows')
Returns logical 1 (true) if the rows of two-dimensional matrix A are in sorted order, and
logical 0 (false) otherwise. Matrix A is considered to be sorted if A and the output of
sortrows(A) are equal.

setdiff(A,B)
Set difference of two arrays; returns the values in A that are not in B. The values in the
returned array are in sorted order.

setdiff(A,B,'rows')

Treats each row of A and each row of B as single entities and returns the rows from A
that are not in B. The rows of the returned matrix are in sorted order.

The 'rows' option does not support cell arrays.

Setxor Set exclusive OR of two arrays

Union Set union of two arrays

Unique Unique values in array

Example

Create a script file and type the following code:

a =[723141591282435]

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

b =[25781416253527]

u =union(a, b)

i = intersect(a, b)

s = setdiff(a, b)

When you run the file, it produces the following result:

a =

 7 23 14 15 9 12 8 24 35

b =

 2 5 7 8 14 16 25 35 27

u =

 Columns 1 through 11

 2 5 7 8 9 12 14 15 16 23 24

 Columns 12 through 14

 25 27 35

i =

 7 8 14 35

s =

 9 12 15 23 24

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Decisions

Decision making structures require that the programmer specify one or more conditions to be evaluated

or tested by the program, along with a statement or statements to be executed if the condition is determined to be
true, and optionally, other statements to be executed if the condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the programming languages:

MATLAB provides following types of decision making statements. Click the following links to check their detail:

Statement Description

if ... end statement

An if ... end statement consists of a boolean expression followed by

one or more statements.

if...else...end statement
An if statement can be followed by an optional else statement,

CHAPTER

9

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/matlab/if_end_statement_matlab.htm
http://www.tutorialspoint.com/matlab/if_else_statement_matlab.htm

TUTORIALS POINT

Simply Easy Learning

which executes when the boolean expression is false.

If... elseif...elseif...else...end statements

An if statement can be followed by an (or more) optional elseif...and
an else statement, which is very useful to test various condition.

nested if statements

You can use one if or elseif statement inside
another if or elseifstatement(s).

switch statement

A switch statement allows a variable to be tested for equality against

a list of values.

nested switch statements

You can use one swicth statement inside
another switchstatement(s).

if … end statement
An if ... end statement consists of an if statement and a boolean expression followed by one or more statements. It
is delimited by the end statement.

Syntax
The syntax of an if statement in MATLAB is:

if <expression>

% statement(s) will execute if the boolean expression is true

<statements>

end

If the expression evaluates to true, then the block of code inside the if statement will be executed. If the expression
evaluates to false, then the first set of code after the end statement will be executed.

Flow Diagram:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/matlab/if_elseif_else_statement.htm
http://www.tutorialspoint.com/matlab/nested_if_statements_matlab.htm
http://www.tutorialspoint.com/matlab/switch_statement_matlab.htm
http://www.tutorialspoint.com/matlab/nested_switch_statements_matlab.htm

TUTORIALS POINT

Simply Easy Learning

Example:
Create a script file and type the following code:

a = 10;

% check the condition using if statement

 if a < 20

 % if condition is true then print the following

 fprintf('a is less than 20\n');

 end

fprintf('value of a is : %d\n', a);

When you run the file, it displays the following result:

a is less than 20

value of a is : 10

if … else … end statement
An if statement can be followed by an optional else statement, which executes when the expression is false.

Syntax:
The syntax of an if...else statement in MATLAB is:

if <expression>

% statement(s) will execute if the boolean expression is true

<statement(s)>

else

<statement(s)>

% statement(s) will execute if the boolean expression is false

end

If the boolean expression evaluates to true, then the if block of code will be executed, otherwise else block of code
will be executed.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Flow Diagram:

Example:
Create a script file and type the following code:

a = 100;

% check the boolean condition

 if a < 20

 % if condition is true then print the following

 fprintf('a is less than 20\n');

 else

 % if condition is false then print the following

 fprintf('a is not less than 20\n');

 end

 fprintf('value of a is : %d\n', a);

When the above code is compiled and executed, it produces the following result:

a is not less than 20

value of a is : 100

if…elseif…elseif…else…end statements
An if statement can be followed by an (or more) optional elseif... and an else statement, which is very useful to

test various condition.

When using if... elseif...else statements, there are few points to keep in mind:

 An if can have zero or one else's and it must come after any elseif's.

 An if can have zero to many elseif's and they must come before the else.

 Once an else if succeeds, none of the remaining elseif's or else's will be tested.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Syntax:

if <expression 1>

% Executes when the expression 1 is true

<statement(s)>

elseif <expression 2>

% Executes when the boolean expression 2 is true

<statement(s)>

Elseif <expression 3>

% Executes when the boolean expression 3 is true

<statement(s)>

else

% executes when the none of the above condition is true

<statement(s)>

end

Example
Create a script file and type the following code in it:

a = 100;

%check the boolean condition

 if a == 10

 % if condition is true then print the following

 fprintf('Value of a is 10\n');

 elseif(a == 20)

 % if else if condition is true

 fprintf('Value of a is 20\n');

 elseif a == 30

 % if else if condition is true

 fprintf('Value of a is 30\n');

 else

 % if none of the conditions is true '

 fprintf('None of the values are matching\n');

 fprintf('Exact value of a is: %d\n', a);

 end

When the above code is compiled and executed, it produces the following result:

None of the values are matching

Exact value of a is: 100

Nested if statements
It is always legal in MATLAB to nest if-else statements which means you can use one if or elseif statement inside
another if or elseif statement(s).

Syntax:
The syntax for a nested if statement is as follows:

if <expression 1>

% Executes when the boolean expression 1 is true

 if <expression 2>

 % Executes when the boolean expression 2 is true

 end

end

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

You can nest elseif...else in the similar way as you have nested if statement.

Example:
Create a script file and type the following code in it:

a = 100;

b = 200;

 % check the boolean condition

 if(a == 100)

 % if condition is true then check the following

 if(b == 200)

 % if condition is true then print the following

 fprintf('Value of a is 100 and b is 200\n');

 end

 end

 fprintf('Exact value of a is : %d\n', a);

 fprintf('Exact value of b is : %d\n', b);

When you run the file, it displays:

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

Switch statement
A switch block conditionally executes one set of statements from several choices. Each choice is covered by a
case statement.

An evaluated switch_expression is a scalar or string.

An evaluated case_expression is a scalar, a string or a cell array of scalars or strings.

The switch block tests each case until one of the cases is true. A case is true when:

 For numbers, eq(case_expression,switch_expression).

 For strings, strcmp(case_expression,switch_expression).

 For objects that support the eq function, eq(case_expression,switch_expression).

 For a cell array case_expression, at least one of the elements of the cell array matches switch_expression, as
defined above for numbers, strings and objects.

When a case is true, MATLAB executes the corresponding statements and then exits the switch block.

The otherwise block is optional and executes only when no case is true.

Syntax

The syntax of switch statement in MATLAB is:

switch <switch_expression>

 case <case_expression>

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 <statements>

 case <case_expression>

 <statements>

 ...

 ...

 otherwise

 <statements>

end

Example
Create a script file and type the following code in it:

grade = 'B';

 switch(grade)

 case 'A'

 fprintf('Excellent!\n');

 case 'B'

 fprintf('Well done\n');

 case 'C'

 fprintf('Well done\n');

 case 'D'

 fprintf('You passed\n');

 case 'F'

 fprintf('Better try again\n');

 otherwise

 fprintf('Invalid grade\n');

 end

When you run the file, it displays:

Well done

Your grade is B

Nested switch statements
It is possible to have a switch as part of the statement sequence of an outer switch. Even if the case constants of
the inner and outer switch contain common values, no conflicts will arise.

Syntax:
The syntax for a nested switch statement is as follows:

switch(ch1)

 case 'A'

 fprintf('This A is part of outer switch');

 switch(ch2)

 case 'A'

 fprintf('This A is part of inner switch');

 case 'B'

 fprintf('This B is part of inner switch');

 end

case 'B'

fprintf('This B is part of outer switch');

end

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Example:
Create a script file and type the following code in it:

a = 100;

b = 200;

switch(a)

 case 100

 fprintf('This is part of outer switch %d\n', a);

 switch(b)

 case 200

 fprintf('This is part of inner switch %d\n', a);

 end

end

fprintf('Exact value of a is : %d\n', a);

fprintf('Exact value of b is : %d\n', b);

When you run the file, it displays:

This is part of outer switch 100

This is part of inner switch 100

Exact value of a is : 100

Exact value of b is : 200

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Loops

There may be a situation when you need to execute a block of code several number of times. In general,

statements are executed sequentially. The first statement in a function is executed first, followed by the second,
and so on.

Programming languages provide various control structures that allow for more complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and following is the
general form of a loop statement in most of the programming languages:

MATLAB provides following types of loops to handle looping requirements. Click the following links to check their
detail:

Loop Type Description

CHAPTER

10

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

while loop

Repeats a statement or group of statements while a given condition is true. It tests
the condition before executing the loop body.

for loop

Executes a sequence of statements multiple times and abbreviates the code that
manages the loop variable.

nested loops You can use one or more loops inside any another loop.

While loop
The while loop repeatedly executes statements while condition is true.

Syntax:
The syntax of a while loop in MATLAB is:

while <expression>

 <statements>

end

The while loop repeatedly executes program statement(s) as long as the expression remains true.

An expression is true when the result is nonempty and contains all nonzero elements (logical or real numeric).
Otherwise, the expression is false.

Example
Create a script file and type the following code:

a = 10;

% while loop execution

while(a < 20)

 fprintf('value of a: %d\n', a);

 a = a + 1;

end

When you run the file, it displays the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

for loop
A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a specific

number of times.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/matlab/matlab_while_loop.htm
http://www.tutorialspoint.com/matlab/matlab_for_loop.htm
http://www.tutorialspoint.com/matlab/matlab_nested_loops.htm

TUTORIALS POINT

Simply Easy Learning

Syntax:
The syntax of a for loop in MATLAB is:

for index = values

 <program statements>

 ...

end

values has one of the following forms:

Format Description

initval:endval
increments the index variable from initval to endval by 1, and repeats execution
of program statements until index is greater than endval.

initval:step:endval
increments index by the value step on each iteration, or decrements when step is
negative.

valArray

creates a column vector index from subsequent columns of array valArrayon each
iteration. For example, on the first iteration, index = valArray(:,1). The loop executes for
a maximum of n times, where n is the number of columns of valArray, given by
numel(valArray, 1, :). The input valArray can be of any MATLAB data type, including a
string, cell array, or struct.

Example 1
Create a script file and type the following code:

for a = 10:20

 fprintf('value of a: %d\n', a);

end

When you run the file, it displays the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

value of a: 20

Example 2
Create a script file and type the following code:

for a = 1.0: -0.1: 0.0

 disp(a)

end

When you run the file, it displays the following result:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

1

 0.9000

 0.8000

 0.7000

 0.6000

 0.5000

 0.4000

 0.3000

 0.2000

 0.1000

 0

Example 3
Create a script file and type the following code:

for a = [24,18,17,23,28]

 disp(a)

end

When you run the file, it displays the following result:

 24

 18

 17

 23

 28

Nested loops
MATLAB allows to use one loop inside another loop. Following section shows few examples to illustrate the
concept.

Syntax:
The syntax for a nested for loop statement in MATLAB is as follows:

for m = 1:j

 for n = 1:k

 <statements>;

 end

end

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

The syntax for a nested while loop statement in MATLAB is as follows:

while <expression1>

 while <expression2>

 <statements>

 end

end

Example
Let us use a nested for loop to display all the prime numbers from 1 to 100. Create a script file and type the
following code:

for i=2:100

 for j=2:100

 if(~mod(i,j))

 break; % if factor found, not prime

 end

 end

 if(j > (i/j))

 fprintf('%d is prime\n', i);

 end

end

When you run the file, it displays the following result:

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

Loop Control Statements
Loop control statements change execution from its normal sequence. When execution leaves a scope, all
automatic objects that were created in that scope are destroyed.

MATLAB supports the following control statements. Click the following links to check their detail.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Control Statement Description

break statement

Terminates the loop statement and transfers execution to the statement

immediately following the loop.

continue statement

Causes the loop to skip the remainder of its body and immediately retest its
condition prior to reiterating.

break statement

The break statement terminates execution of for or while loop. Statements in the loop that appear after the break

statement are not executed.

In nested loops, break exits only from the loop in which it occurs. Control passes to the statement following the end
of that loop.

Flow Diagram:

Example:

Create a script file and type the following code:

a = 10;

% while loop execution

 while (a < 20)

 fprintf('value of a: %d\n', a);

 a = a+1;

 if(a > 15)

 % terminate the loop using break statement

 break;

 end

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/matlab/matlab_break_statement.htm
http://www.tutorialspoint.com/matlab/matlab_continue_statement.htm

TUTORIALS POINT

Simply Easy Learning

 end

When you run the file, it displays the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

continue statement
The continue statement is used for passing control to next iteration of for or while loop.

The continue statement in MATLAB works somewhat like the break statement. Instead of forcing termination,
however, 'continue' forces the next iteration of the loop to take place, skipping any code in between.

Flow Diagram:

Example:
Create a script file and type the following code:

a = 10;

%while loop execution

while a < 20

 if a == 15

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 % skip the iteration

 a = a + 1;

 continue;

 end

 fprintf('value of a: %d\n', a);

 a = a + 1;

end

When you run the file, it displays the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Vectors

Avector is a one-dimensional array of numbers. MATLAB allows creating two types of vectors:

 Row vectors

 Column vectors

Row Vectors:
Row vectors are created by enclosing the set of elements in square brackets, using space or comma to delimit the

elements.

r =[7891011]

MATLAB will execute the above statement and return the following result:

r =

 Columns 1 through 4

 7 8 9 10

 Column 5

 11

Column Vectors:
Column vectors are created by enclosing the set of elements in square brackets, using semicolon to delimit the

elements.

c =[7;8;9;10;11]

MATLAB will execute the above statement and return the following result:

c =

 7

 8

 9

 10

 11

CHAPTER

11

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Referencing the Elements of a Vector
You can reference one or more of the elements of a vector in several ways. The i th component of a vector v is
referred as v(i). For example:

v =[1;2;3;4;5;6]; % creating a column vector of 6 elements

v(3)

MATLAB will execute the above statement and return the following result:

ans =

 3

When you reference a vector with a colon, such as v(:), all the components of the vector are listed.

v =[1;2;3;4;5;6]; % creating a column vector of 6 elements

v(:)

MATLAB will execute the above statement and return the following result:

ans =

 1

 2

 3

 4

 5

 6

MATLAB allows you to select a range of elements from a vector.

For example, let us create a row vector rv of 9 elements, then we will reference the elements 3 to 7 by
writing rv(3:7) and create a new vector named sub_rv.

rv =[123456789];

sub_rv = rv(3:7)

MATLAB will execute the above statement and return the following result:

sub_rv =

 3 4 5 6 7

Vector Operations
In this section, let us discuss the following vector operations:

 Addition and Subtraction of Vectors

 Scalar Multiplication of Vectors

 Transpose of a Vector

 Appending Vectors

 Magnitude of a Vector

 Vector Dot Product

 Vectors with Uniformly Spaced Elements

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/matlab/matlab_vector_add_subtract.htm
http://www.tutorialspoint.com/matlab/matlab_vector_scalar_multiplication.htm
http://www.tutorialspoint.com/matlab/matlab_vector_transpose.htm
http://www.tutorialspoint.com/matlab/matlab_vector_appending.htm
http://www.tutorialspoint.com/matlab/matlab_vector_magnitude.htm
http://www.tutorialspoint.com/matlab/matlab_vector_dot_product.htm
http://www.tutorialspoint.com/matlab/matlab_vector_uniformly_spaced.htm

TUTORIALS POINT

Simply Easy Learning

Addition and Subtraction of Vectors
You can add or subtract two vectors. Both the operand vectors must be of same type and have same number of
elements.

Example
Create a script file with the following code:

A = [7, 11, 15, 23, 9];

B = [2, 5, 13, 16, 20];

C = A + B;

D = A - B;

disp(C);

disp(D);

When you run the file, it displays the following result:

9 16 28 39 29

5 6 2 7 -11

Scalar Multiplication of vectors
When you multiply a vector by a number, this is called the scalar multiplication. Scalar multiplication produces a

new vector of same type with each element of the original vector multiplied by the number.

Example
Create a script file with the following code:

v = [12 34 10 8];

m = 5 * v

When you run the file, it displays the following result:

m =

 60 170 50 40

Please note that you can perform all scalar operations on vectors. For example, you can add, subtract and divide a
vector with a scalar quantity.

Transpose of a Vector
The transpose operation changes a column vector into a row vector and vice versa. The transpose operation is
represented by a single quote(').

Example
Create a script file with the following code:

r = [1 2 3 4];

tr = r';

v = [1;2;3;4];

tv = v';

disp(tr); disp(tv);

When you run the file, it displays the following result:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 1

 2

 3

 4

 1 2 3 4

Appending Vector
MATLAB allows you to append vectors together to create new vectors.

If you have two row vectors r1 and r2 with n and m number of elements, to create a row vector r of n plus m
elements, by appending these vectors, you write:

r = [r1,r2]

You can also create a matrix r by appending these two vectors, the vector r2, will be the second row of the matrix:

r = [r1;r2]

However, to do this, both the vectors should have same number of elements.

Similarly, you can append two column vectors c1 and c2 with n and m number of elements. To create a column
vector c of n plus m elements, by appending these vectors, you write:

c = [c1; c2]

You can also create a matrix c by appending these two vectors; the vector c2 will be the second column of the
matrix:

c = [c1, c2]

However, to do this, both the vectors should have same number of elements.

Example
Create a script file with the following code:

r1 = [1 2 3 4];

r2 = [5 6 7 8];

r = [r1,r2]

rMat = [r1;r2]

c1 = [1; 2; 3; 4];

c2 = [5; 6; 7; 8];

c = [c1; c2]

cMat = [c1,c2]

When you run the file, it displays the following result:

r =

 1 2 3 4 5 6 7 8

rMat =

 1 2 3 4

 5 6 7 8

c =

 1

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 2

 3

 4

 5

 6

 7

 8

cMat =

 1 5

 2 6

 3 7

 4 8

Magnitude of a Vector
Magnitude of a vector v with elements v1, v2, v3, …, vn, is given by the equation:

|v| = √(v12 + v22 + v32 + … + vn2)

You need to take the following steps to calculate the magnitude of a vector:

1. Take the product of the vector with itself, using array multiplication (.*). This produces a vector sv, whose

elements are squares of the elements of vector v.

sv = v.*v;

2. Use the sum function to get the sum of squares of elements of vector v. This is also called the dot product of

vector v.

dp= sum(sv);

3. Use the sqrt function to get the square root of the sum which is also the magnitude of the vector v.

mag = sqrt(s);

Example
Create a script file with the following code:

v = [1: 2: 20];

sv = v.* v; %the vector with elements

 % as square of v's elements

dp = sum(sv); % sum of squares -- the dot product

mag = sqrt(dp); % magnitude

disp('Magnitude:'); disp(mag);

When you run the file, it displays the following result:

Magnitude:

 36.4692

Vector Dot Product
Dot product of two vectors a = (a1, a2, …, an) and b = (b1, b2, …, bn) is given by:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

a.b = ∑(ai.bi)

Dot product of two vectors a and b is calculated using the dot function.

dot(a, b);

Example
Create a script file with the following code:

v1 = [2 3 4];

v2 = [1 2 3];

dp = dot(v1, v2);

disp('Dot Product:'); disp(dp);

When you run the file, it displays the following result:

Dot Product:

 20

Vectors with Uniformly Spaced Elements
MATLAB allows you to create a vector with uniformly spaced elements.

To create a vector v with the first element f, last element l, and the difference between elements is any real number
n, we write:

v = [f : n : l]

Example
Create a script file with the following code:

v = [1: 2: 20];

sqv = v.^2;

disp(v);disp(sqv);

When you run the file, it displays the following result:

1 3 5 7 9 11 13 15 17 19

1 9 25 49 81 121 169 225 289 361

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Matrics

Amatrix is a two-dimensional array of numbers.

In MATLAB, you create a matrix by entering elements in each row as comma or space delimited numbers and
using semicolons to mark the end of each row.

For example, let us create a 4-by-5 matrix a:

a =[12345;23456;34567;45678]

MATLAB will execute the above statement and return the following result:

a =

 1 2 3 4 5

 2 3 4 5 6

 3 4 5 6 7

 4 5 6 7 8

Referencing the Elements of a Matrix
To reference an element in the mth row and nth column, of a matrix mx, we write:

mx(m, n);

For example, to refer to the element in the 2nd row and 5th column, of the matrix a, as created in the last section,

we type:

a =[12345;23456;34567;45678];

a(2,5)

MATLAB will execute the above statement and return the following result:

ans =

 6

To reference all the elements in the mth column we type A(:,m).

Let us create a column vector v, from the elements of the 4th row of the matrix a:

a =[12345;23456;34567;45678];

CHAPTER

12

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

v = a(:,4)

MATLAB will execute the above statement and return the following result:

v =

 4

 5

 6

 7

You can also select the elements in the mth through nth columns, for this we write:

a(:,m:n)

Let us create a smaller matrix taking the elements from the second and third columns:

a =[12345;23456;34567;45678];

a(:,2:3)

MATLAB will execute the above statement and return the following result:

ans =

 2 3

 3 4

 4 5

 5 6

In the same way, you can create a sub-matrix taking a sub-part of a matrix.

a =[12345;23456;34567;45678];

a(:,2:3)

MATLAB will execute the above statement and return the following result:

ans =

 2 3

 3 4

 4 5

 5 6

In the same way, you can create a sub-matrix taking a sub-part of a matrix.

For example, let us create a sub-matrix sa taking the inner subpart of a:

345

456

To do this, write:

a =[12345;23456;34567;45678];

sa = a(2:3,2:4)

MATLAB will execute the above statement and return the following result:

sa =

 3 4 5

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 4 5 6

Deleting a Row or a Column in a Matrix
You can delete an entire row or column of a matrix by assigning an empty set of square braces [] to that row or
column. Basically, [] denotes an empty array.

For example, let us delete the fourth row of a:

a =[12345;23456;34567;45678];

a(4,:)=[]

MATLAB will execute the above statement and return the following result:

a =

 1 2 3 4 5

 2 3 4 5 6

 3 4 5 6 7

Next, let us delete the fifth column of a:

a =[12345;23456;34567;45678];

a(:,5)=[]

MATLAB will execute the above statement and return the following result:

a =

 1 2 3 4

 2 3 4 5

 3 4 5 6

 4 5 6 7

Example

In this example, let us create a 3-by-3 matrix m, then we will copy the second and third rows of this matrix twice to
create a 4-by-3 matrix.

Create a script file with the following code:

a =[123;456;789];

new_mat = a([2,3,2,3],:)

When you run the file, it displays the following result:

new_mat =

 4 5 6

 7 8 9

 4 5 6

 7 8 9

Matrix Operations

In this section, let us discuss the following basic and commonly used matrix operations:

 Addition and Subtraction of Matrices

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/matlab/matlab_matrix_add_subtract.htm

TUTORIALS POINT

Simply Easy Learning

 Division of Matrices
 Scalar Operations of Matrices
 Transpose of a Matrix
 Concatenating Matrices
 Matrix Multiplication
 Determinant of a Matrix
 Inverse of a Matrix

Addition and Subtraction of Matrices
You can add or subtract matrices. Both the operand matrices must have the same number of rows and columns.

Example
Create a script file with the following code:

a = [1 2 3 ; 4 5 6; 7 8 9];

b = [7 5 6 ; 2 0 8; 5 7 1];

c = a + b

d = a - b

When you run the file, it displays the following result:

c =

 8 7 9

 6 5 14

 12 15 10

d =

 -6 -3 -3

 2 5 -2

 2 1 8

Division of Matrices
You can divide two matrices using left (\) or right (/) division operators. Both the operand matrices must have the
same number of rows and columns.

Example
Create a script file with the following code:

a = [1 2 3 ; 4 5 6; 7 8 9];

b = [7 5 6 ; 2 0 8; 5 7 1];

c = a / b

d = a \ b

When you run the file, it displays the following result:

c =

 -0.52542 0.68644 0.66102

 -0.42373 0.94068 1.01695

 -0.32203 1.19492 1.37288

d =

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/matlab/matlab_matrix_division.htm
http://www.tutorialspoint.com/matlab/matlab_matrix_scalar_operation.htm
http://www.tutorialspoint.com/matlab/matlab_matrix_transpose.htm
http://www.tutorialspoint.com/matlab/matlab_matrix_concatenation.htm
http://www.tutorialspoint.com/matlab/matlab_matrix_multiplication.htm
http://www.tutorialspoint.com/matlab/matlab_matrix_determinant.htm
http://www.tutorialspoint.com/matlab/matlab_matrix_inverse.htm

TUTORIALS POINT

Simply Easy Learning

 -3.27778 -1.05556 -4.86111

 -0.11111 0.11111 -0.27778

 3.05556 1.27778 4.30556

Scalar Operations of Matrices
When you add, subtract, multiply or divide a matrix by a number, this is called the scalar operation.

Scalar operations produce a new matrix with same number of rows and columns with each element of the original
matrix added to, subtracted from, multiplied by or divided by the number.

Example
Create a script file with the following code:

a = [10 12 23 ; 14 8 6; 27 8 9];

b = 2;

c = a + b

d = a - b

e = a * b

f = a / b

When you run the file, it displays the following result:

c =

 12 14 25

 16 10 8

 29 10 11

d =

 8 10 21

 12 6 4

 25 6 7

e =

 20 24 46

 28 16 12

 54 16 18

f =

 5.0000 6.0000 11.5000

 7.0000 4.0000 3.0000

 13.5000 4.0000 4.5000

Transpose of a Matrix
The transpose operation switches the rows and columns in a matrix. It is represented by a single quote(').

Example
Create a script file with the following code:

a = [10 12 23 ; 14 8 6; 27 8 9]

b = a'

When you run the file, it displays the following result:

a =

 10 12 23

 14 8 6

 27 8 9

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

b =

 10 14 27

 12 8 8

 23 6 9

Concatenating Matrices
You can concatenate two matrices to create a larger matrix. The pair of square brackets '[]' is the concatenation
operator.

MATLAB allows two types of concatenations:

 Horizontal concatenation

 Vertical concatenation

When you concatenate two matrices by separating those using commas, they are just appended horizontally. It is
called horizontal concatenation.

Alternatively, if you concatenate two matrices by separating those using semicolons, they are appended vertically.
It is called vertical concatenation.

Example
Create a script file with the following code:

a = [10 12 23 ; 14 8 6; 27 8 9]

b = [12 31 45 ; 8 0 -9; 45 2 11]

c = [a, b]

d = [a; b]

When you run the file, it displays the following result:

a =

 10 12 23

 14 8 6

 27 8 9

b =

 12 31 45

 8 0 -9

 45 2 11

c =

 10 12 23 12 31 45

 14 8 6 8 0 -9

 27 8 9 45 2 11

d =

 10 12 23

 14 8 6

 27 8 9

 12 31 45

 8 0 -9

 45 2 11

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Matrix Multiplication
Consider two matrices A and B. If A is an m x n matrix and B is a n x p matrix, they could be multiplied together to
produce an m x n matrix C. Matrix multiplication is possible only if the number of columns n in A is equal to the
number of rows n in B.

In matrix multiplication, the elements of the rows in the first matrix are multiplied with corresponding columns in the
second matrix.

Each element in the (i, j)th position, in the resulting matrix C, is the summation of the products of elements in ith row

of first matrix with the corresponding element in the jth column of the second matrix.

In MATLAB, matrix multiplication is performed by using the * operator.

Example
Create a script file with the following code:

a = [1 2 3; 2 3 4; 1 2 5]

b = [2 1 3 ; 5 0 -2; 2 3 -1]

prod = a * b

When you run the file, it displays the following result:

a =

 1 2 3

 2 3 4

 1 2 5

b =

 2 1 3

 5 0 -2

 2 3 -1

prod =

 18 10 -4

 27 14 -4

 22 16 -6

Determinant of a Matrix
Determinant of a matrix is calculated using the det function of MATLAB. Determinant of a matrix A is given by

det(A).

Example
Create a script file with the following code:

a = [1 2 3; 2 3 4; 1 2 5]

det(a)

When you run the file, it displays the following result:

a =

 1 2 3

 2 3 4

 1 2 5

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

ans =

 -2

Inverse of a Matrix
The inverse of a matrix A is denoted by A−1 such that the following relationship holds:

AA−1 = A−1A = 1

The inverse of a matrix does not always exist. If the determinant of the matrix is zero, then the inverse does
not exist and the matrix is singular.

In MATLAB, inverse of a matrix is calculated using the inv function. Inverse of a matrix A is given by inv(A).

Example
Create a script file and type the following code:

a = [1 2 3; 2 3 4; 1 2 5]

inv(a)

When you run the file, it displays the following result:

a =

 1 2 3

 2 3 4

 1 2 5

ans =

 -3.5000 2.0000 0.5000

 3.0000 -1.0000 -1.0000

 -0.5000 0 0.5000

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Arrays

In MATLAB all variables of all data types are multidimensional arrays. A vector is a one-dimensional array and

a matrix is a two-dimensional array.

We have already discussed vectors and matrices. In this chapter, we will discuss multidimensional arrays.
However, before that, let us discuss some special types of arrays.

Special Arrays in MATLAB
In this section, we will discuss some functions that create some special arrays. For all these functions, a single
argument creates a square array, double arguments create rectangular array.

The zeros() function creates an array of all zeros:

For example:

zeros(5)

MATLAB will execute the above statement and return the following result:

ans =

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

The ones() function creates an array of all ones:

For example:

ones(4,3)

MATLAB will execute the above statement and return the following result:

ans =

 1 1 1

 1 1 1

 1 1 1

 1 1 1

CHAPTER

13

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

The eye() function creates an identity matrix.

For example:

eye(4)

MATLAB will execute the above statement and return the following result:

ans =

 1 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

The rand() function creates an array of uniformly distributed random numbers on (0,1):

For example:

rand(3,5)

MATLAB will execute the above statement and return the following result:

ans =

 0.8147 0.9134 0.2785 0.9649 0.9572

 0.9058 0.6324 0.5469 0.1576 0.4854

 0.1270 0.0975 0.9575 0.9706 0.8003

A Magic Square
A magic square is a square that produces the same sum, when its elements are added row-wise, column-wise or

diagonally.

The magic() function creates a magic square array. It takes a singular argument that gives the size of the square.

The argument must be a scalar greater than or equal to 3.

magic(4)

MATLAB will execute the above statement and return the following result:

ans =

 16 2 3 13

 5 11 10 8

 9 7 6 12

 4 14 15 1

Multidimensional Arrays
An array having more than two dimensions is called a multidimensional array in MATLAB. Multidimensional arrays
in MATLAB are an extension of the normal two-dimensional matrix.

Generally to generate a multidimensional array, we first create a two-dimensional array and extend it.

For example, let's create a two-dimensional array a.

a =[795;619;432]

MATLAB will execute the above statement and return the following result:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

a =

 7 9 5

 6 1 9

 4 3 2

The array a is a 3-by-3 array; we can add a third dimension to a, by providing the values like:

a(:,:,2)=[123;456;789]

MATLAB will execute the above statement and return the following result:

a(:,:,1) =

 7 9 5

 6 1 9

 4 3 2

a(:,:,2) =

 1 2 3

 4 5 6

 7 8 9

We can also create multidimensional arrays using the ones(), zeros() or the rand() functions.

For example,

b = rand(4,3,2)

MATLAB will execute the above statement and return the following result:

b(:,:,1) =

 0.0344 0.7952 0.6463

 0.4387 0.1869 0.7094

 0.3816 0.4898 0.7547

 0.7655 0.4456 0.2760

b(:,:,2) =

 0.6797 0.4984 0.2238

 0.6551 0.9597 0.7513

 0.1626 0.3404 0.2551

 0.1190 0.5853 0.5060

We can also use the cat() function to build multidimensional arrays. It concatenates a list of arrays along a

specified dimension:

Syntax for the cat() function is:

B = cat(dim, A1, A2...)

Where,

 B is the new array created

 A1, A2, ... are the arrays to be concatenated

 dim is the dimension along which to concatenate the arrays

Example
Create a script file and type the following code into it:

a =[987;654;321];

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

b =[123;456;789];

c = cat(3, a, b,[231;478;390])

When you run the file, it displays:

c(:,:,1) =

 9 8 7

 6 5 4

 3 2 1

c(:,:,2) =

 1 2 3

 4 5 6

 7 8 9

c(:,:,3) =

 2 3 1

 4 7 8

 3 9 0

Array Functions
MATLAB provides the following functions to sort, rotate, permute, reshape, or shift array contents.

Function Purpose

Length Length of vector or largest array dimension

Ndims Number of array dimensions

Numel Number of array elements

Size Array dimensions

iscolumn Determine whether input is column vector

isempty Determine whether array is empty

ismatrix Determine whether input is matrix

isrow Determine whether input is row vector

isscalar Determine whether input is scalar

isvector Determine whether input is vector

blkdiag Construct block diagonal matrix from input arguments

circshift Shift array circularly

ctranspose Complex conjugate transpose

diag Diagonal matrices and diagonals of matrix

flipdim Flip array along specified dimension

fliplr Flip matrix left to right

flipud Flip matrix up to down

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

ipermute Inverse permute dimensions of N-D array

permute Rearrange dimensions of N-D array

repmat Replicate and tile array

reshape Reshape array

rot90 Rotate matrix 90 degrees

shiftdim Shift dimensions

issorted Determine whether set elements are in sorted order

sort Sort array elements in ascending or descending order

sortrows Sort rows in ascending order

squeeze Remove singleton dimensions

transpose Transpose

vectorize Vectorize expression

Examples

The following examples illustrate some of the functions mentioned above.

Length, Dimension and Number of elements:

Create a script file and type the following code into it:

x =[7.1,3.4,7.2,28/4,3.6,17,9.4,8.9];

length(x)% length of x vector

y = rand(3,4,5,2);

ndims(y)%no of dimensions in array y

s =['Zara','Nuha','Shamim','Riz','Shadab'];

numel(s)%no of elements in s

When you run the file, it displays the following result:

ans =

 8

ans =

 4

ans =

 23

Circular Shifting the Array Elements:

Create a script file and type the following code into it:

a =[123;456;789]% the original array a

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

b = circshift(a,1)% circular shift first dimension values down by1.

c = circshift(a,[1-1])% circular shift first dimension values % down by1

%and second dimension values to the left %by1.

When you run the file, it displays the following result:

a =

 1 2 3

 4 5 6

 7 8 9

b =

 7 8 9

 1 2 3

 4 5 6

c =

 8 9 7

 2 3 1

 5 6 4

Sorting Arrays
Create a script file and type the following code into it:

v =[2345129501917]% horizonal vector

sort(v)%sorting v

m =[264;539;201]% two dimensional array

sort(m,1)% sorting m along the row

sort(m,2)% sorting m along the column

When you run the file, it displays the following result:

v =

 23 45 12 9 5 0 19 17

ans =

 0 5 9 12 17 19 23 45

m =

 2 6 4

 5 3 9

 2 0 1

ans =

 2 0 1

 2 3 4

 5 6 9

ans =

 2 4 6

 3 5 9

 0 1 2

Cell Array
Cell arrays are arrays of indexed cells where each cell can store an array of a different dimension and data type.

The cell function is used for creating a cell array. Syntax for the cell function is:

C = cell(dim)

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

C = cell(dim1,...,dimN)

D = cell(obj)

Where,
 C is the cell array;

 dim is a scalar integer or vector of integers that specifies the dimensions of cell array C;

 dim1, ... , dimN are scalar integers that specify the dimensions of C;

 obj is One of the following:

o Java array or object

o .NET array of type System.String or System.Object

Example
Create a script file and type the following code into it:

c = cell(2,5);

c ={'Red','Blue','Green','Yellow','White';12345}

When you run the file, it displays the following result:

c =

 'Red' 'Blue' 'Green' 'Yellow' 'White'

 [1] [2] [3] [4] [5]

Accessing Data in Cell Arrays
There are two ways to refer to the elements of a cell array:

 Enclosing the indices in first bracket (), to refer to sets of cells

 Enclosing the indices in braces {}, to refer to the data within individual cells

When you enclose the indices in first bracket, it refers to the set of cells.

Cell array indices in smooth parentheses refer to sets of cells.

For example:

c ={'Red','Blue','Green','Yellow','White';12345};

c(1:2,1:2)

MATLAB will execute the above statement and return the following result:

ans =

 'Red' 'Blue'

 [1] [2]

You can also access the contents of cells by indexing with curly braces.

For example:

c ={'Red','Blue','Green','Yellow','White';12345};

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

c{1,2:4}

MATLAB will execute the above statement and return the following result:

ans =

 Blue

ans =

 Green

ans =

 Yellow

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Colon Notation

Thecolon(:) is one of the most useful operator in MATLAB. It is used to create vectors, subscript arrays,

and specify for iterations.

If you want to create a row vector, containing integers from 1 to 10, you write:

1:10

MATLAB executes the statement and returns a row vector containing the integers from 1 to 10:

ans =

 1 2 3 4 5 6 7 8 9 10

If you want to specify an increment value other than one, for example:

100:-5:50

MATLAB executes the statement and returns the following result:

ans =

 100 95 90 85 80 75 70 65 60 55 50

Let us take another example:

0:pi/8:pi

MATLAB executes the statement and returns the following result:

ans =

 Columns 1 through 7

 0 0.3927 0.7854 1.1781 1.5708 1.9635 2.3562

 Columns 8 through 9

 2.7489 3.1416

You can use the colon operator to create a vector of indices to select rows, columns or elements of arrays.

The following table describes its use for this purpose (let us have a matrix A):

CHAPTER

14

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Format Purpose

A(:,j) is the jth column of A.

A(i,:) is the ith row of A.

A(:,:) is the equivalent two-dimensional array. For matrices this is the same as A.

A(j:k) is A(j), A(j+1),...,A(k).

A(:,j:k) is A(:,j), A(:,j+1),...,A(:,k).

A(:,:,k) is the kth page of three-dimensional array A.

A(i,j,k,:)
is a vector in four-dimensional array A. The vector includes A(i,j,k,1), A(i,j,k,2), A(i,j,k,3), and so
on.

A(:)
is all the elements of A, regarded as a single column. On the left side of an assignment statement,
A(:) fills A, preserving its shape from before. In this case, the right side must contain the same
number of elements as A.

Example
Create a script file and type the following code in it:

A =[1234;4567;78910]

A(:,2)% second column of A

A(:,2:3)% second and third column of A

A(2:3,2:3)% second and third rows and second and third columns

When you run the file, it displays the following result:

A =

 1 2 3 4

 4 5 6 7

 7 8 9 10

ans =

 2

 5

 8

ans =

 2 3

 5 6

 8 9

ans =

 5 6

 8 9

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Numbers

MATLAB supports various numeric classes that include signed and unsigned integers and single-precision and

double-precision floating-point numbers. By default, MATLAB stores all numeric values as double-precision floating point
numbers.

You can choose to store any number or array of numbers as integers or as single-precision numbers.

All numeric types support basic array operations and mathematical operations.

Conversion to Various Numeric Data Types
MATLAB provides the following functions to convert to various numeric data types:

Function Purpose

Double Converts to double precision number

Single Converts to single precision number

int8 Converts to 8-bit signed integer

int16 Converts to 16-bit signed integer

int32 Converts to 32-bit signed integer

int64 Converts to 64-bit signed integer

uint8 Converts to 8-bit unsigned integer

uint16 Converts to 16-bit unsigned integer

uint32 Converts to 32-bit unsigned integer

uint64 Converts to 64-bit unsigned integer

Example
Create a script file and type the following code:

CHAPTER

15

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

x = single([5.323.476.28]).*7.5

x =double([5.323.476.28]).*7.5

x = int8([5.323.476.28]).*7.5

x = int16([5.323.476.28]).*7.5

x = int32([5.323.476.28]).*7.5

x = int64([5.323.476.28]).*7.5

When you run the file, it shows the following result:

x =

 39.9000 26.0250 47.1000

x =

 39.9000 26.0250 47.1000

x =

 38 23 45

x =

 38 23 45

x =

 38 23 45

x =

 38 23 45

Example
Let us extend the previous example a little more. Create a script file and type the following code:

x = int32([5.323.476.28]).*7.5

x = int64([5.323.476.28]).*7.5

x = num2cell(x)

When you run the file, it shows the following result:

x =

 38 23 45

x =

 38 23 45

x =

 [38] [23] [45]

Smallest and Largest Integers
The functions intmax() and intmin() return the maximum and minimum values that can be represented with all

types of integer numbers.

Both the functions take the integer data type as the argument, for example, intmax(int8) or intmin(int64) and return
the maximum and minimum values that you can represent with the integer data type.

Example
The following example illustrates how to obtain the smallest and largest values of integers. Create a script file and
write the following code in it:

% displaying the smallest and largest signed integer data

str ='The range for int8 is:\n\t%d to %d ';

sprintf(str, intmin('int8'), intmax('int8'))

str ='The range for int16 is:\n\t%d to %d ';

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

sprintf(str, intmin('int16'), intmax('int16'))

str ='The range for int32 is:\n\t%d to %d ';

sprintf(str, intmin('int32'), intmax('int32'))

str ='The range for int64 is:\n\t%d to %d ';

sprintf(str, intmin('int64'), intmax('int64'))

% displaying the smallest and largest unsigned integer data

str ='The range for uint8 is:\n\t%d to %d ';

sprintf(str, intmin('uint8'), intmax('uint8'))

str ='The range for uint16 is:\n\t%d to %d ';

sprintf(str, intmin('uint16'), intmax('uint16'))

str ='The range for uint32 is:\n\t%d to %d ';

sprintf(str, intmin('uint32'), intmax('uint32'))

str ='The range for uint64 is:\n\t%d to %d ';

sprintf(str, intmin('uint64'), intmax('uint64'))

When you run the file, it shows the following result:

ans =

The range for int8 is:

 -128 to 127

ans =

The range for int16 is:

 -32768 to 32767

ans =

The range for int32 is:

 -2147483648 to 2147483647

ans =

The range for int64 is:

 -9223372036854775808 to 9223372036854775807

ans =

The range for uint8 is:

 0 to 255

ans =

The range for uint16 is:

 0 to 65535

ans =

The range for uint32 is:

 0 to 4294967295

ans =

The range for uint64 is:

 0 to 1.844674e+19

Smallest and Largest Floating Point Numbers
The functions realmax() and realmin() return the maximum and minimum values that can be represented with

floating point numbers.

Both the functions when called with the argument 'single', return the maximum and minimum values that you can
represent with the single-precision data type and when called with the argument 'double', return the maximum and
minimum values that you can represent with the double-precision data type.

Example
The following example illustrates how to obtain the smallest and largest floating point numbers. Create a script file
and write the following code in it:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

% displaying the smallest and largest single-precision

% floating point number

str ='The range for single is:\n\t%g to %g and\n\t %g to %g';

sprintf(str,-realmax('single'),-realmin('single'),...

 realmin('single'), realmax('single'))

% displaying the smallest and largest double-precision

% floating point number

str ='The range for double is:\n\t%g to %g and\n\t %g to %g';

sprintf(str,-realmax('double'),-realmin('double'),...

 realmin('double'), realmax('double'))

When you run the file, it displays the following result:

ans =

The range for single is:

 -3.40282e+38 to -1.17549e-38 and

 1.17549e-38 to 3.40282e+38

ans =

The range for double is:

 -1.79769e+308 to -2.22507e-308 and

 2.22507e-308 to 1.79769e+308

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Strings

Creating a character string is quite simple in MATLAB. In fact, we have used it many times. For example,

you type the following in the command prompt:

my_string ='Tutorial''s Point'

MATLAB will execute the above statement and return the following result:

my_string =

Tutorial's Point

MATLAB considers all variables as arrays, and strings are considered as character arrays. Let us use the whos
command to check the variable created above:

whos

MATLAB will execute the above statement and return the following result:

Name Size Bytes Class Attributes

my_string 1x16 32 char

Interestingly, you can use numeric conversion functions like uint8 or uint16 to convert the characters in the string
to their numeric codes. The char function converts the integer vector back to characters:

Example
Create a script file and type the following code into it:

my_string ='Tutorial''s Point';

str_ascii = uint8(my_string)%8-bit ascii values

str_back_to_char=char(str_ascii)

str_16bit = uint16(my_string)%16-bit ascii values

str_back_to_char =char(str_16bit)

When you run the file, it displays the following result:

str_ascii =

 Columns 1 through 14

CHAPTER

16

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 84 117 116 111 114 105 97 108 39 115 32 80 111 105

 Columns 15 through 16

 110 116

str_back_to_char =

Tutorial's Point

str_16bit =

 Columns 1 through 10

 84 117 116 111 114 105 97 108 39 115

 Columns 11 through 16

 32 80 111 105 110 116

str_back_to_char =

Tutorial's Point

Rectangular Character Array
The strings we have discussed so far are one-dimensional character arrays; however, we need to store more than
that. We need to store more dimensional textual data in our program. This is achieved by creating rectangular
character arrays.

Simplest way of creating a rectangular character array is by concatenating two or more one-dimensional character
arrays, either vertically or horizontally as required.

You can combine strings vertically in either of the following ways:

 Using the MATLAB concatenation operator [] and separating each row with a semicolon (;). Please note that

in this method each row must contain the same number of characters. For strings with different lengths, you
should pad with space characters as needed.

 Using the char function. If the strings are different length, char pads the shorter strings with trailing blanks so

that each row has the same number of characters.

Example
Create a script file and type the following code into it:

doc_profile =['Zara Ali ';...

'Sr. Surgeon ';...

'R N Tagore Cardiology Research Center']

doc_profile =char('Zara Ali','Sr. Surgeon',...

'RN Tagore Cardiology Research Center')

When you run the file, it displays the following result:

doc_profile =

Zara Ali

Sr. Surgeon

R N Tagore Cardiology Research Center

doc_profile =

Zara Ali

Sr. Surgeon

RN Tagore Cardiology Research Center

You can combine strings horizontally in either of the following ways:

 Using the MATLAB concatenation operator, [] and separating the input strings with a comma or a space. This

method preserves any trailing spaces in the input arrays.

 Using the string concatenation function, strcat. This method removes trailing spaces in the inputs

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Example
Create a script file and type the following code into it:

name ='Zara Ali ';

position ='Sr. Surgeon ';

worksAt ='R N Tagore Cardiology Research Center';

profile =[name ', ' position ', ' worksAt]

profile = strcat(name,', ', position,', ', worksAt)

When you run the file, it displays the following result:

profile =

Zara Ali , Sr. Surgeon , R N

Tagore Cardiology Research Center

profile =

Zara Ali,Sr. Surgeon,R N Tagore Cardiology Research Center

Combining Strings into a Cell Array
From our previous discussion, it is clear that combining strings with different lengths could be a pain as all strings
in the array has to be of the same length. We have used blank spaces at the end of strings to equalize their length.

However, a more efficient way to combine the strings is to convert the resulting array into a cell array.

MATLAB cell array can hold different sizes and types of data in an array. Cell arrays provide a more flexible way to
store strings of varying length.

The cellstr function converts a character array into a cell array of strings.

Example
Create a script file and type the following code into it:

name ='Zara Ali ';

position ='Sr. Surgeon ';

worksAt ='R N Tagore Cardiology Research Center';

profile =char(name, position, worksAt);

profile = cellstr(profile);

disp(profile)

When you run the file, it displays the following result:

'Zara Ali'

'Sr. Surgeon'

'R N Tagore Cardiology Research Center'

String Functions in MATLAB
MATLAB provides numerous string functions creating, combining, parsing, comparing and manipulating strings.

Following table provides brief description of the string functions in MATLAB:

Function Purpose

Functions for storing text in character arrays, combine character arrays, etc.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Blanks Create string of blank characters

Cellstr Create cell array of strings from character array

Char Convert to character array (string)

Iscellstr Determine whether input is cell array of strings

Ischar Determine whether item is character array

Sprint Format data into string

Strcat Concatenate strings horizontally

Strjoin Join strings in cell array into single string

Functions for identifying parts of strings, find and replace substrings

Ischar Determine whether item is character array

Isletter Array elements that are alphabetic letters

Isspace Array elements that are space characters

Isstrprop Determine whether string is of specified category

Sscanf Read formatted data from string

Strfind Find one string within another

Strrep Find and replace substring

Strsplit Split string at specified delimiter

Strtok Selected parts of string

Validatestring Check validity of text string

Symvar Determine symbolic variables in expression

Regexp Match regular expression (case sensitive)

Regexpi Match regular expression (case insensitive)

Regexprep Replace string using regular expression

Regexptranslate Translate string into regular expression

Functions for string comparison

Strcmp Compare strings (case sensitive)

Strcmpi Compare strings (case insensitive)

Strncmp Compare first n characters of strings (case sensitive)

Strncmpi Compare first n characters of strings (case insensitive)

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Functions for changing string to upper- or lowercase, creating or removing white space

Deblank Strip trailing blanks from end of string

Strtrim Remove leading and trailing white space from string

Lower Convert string to lowercase

Upper Convert string to uppercase

Strjust Justify character array

EXAMPLES

The following examples illustrate some of the above-mentioned string functions:

FORMATTING STRINGS
Create a script file and type the following code into it:

A = pi*1000*ones(1,5);

sprintf(' %f \n %.2f \n %+.2f \n %12.2f \n %012.2f \n', A)

When you run the file, it displays the following result:

ans =

 3141.592654

 3141.59

 +3141.59

 3141.59

 000003141.59

JOINING STRINGS
Create a script file and type the following code into it:

%cell array of strings

str_array ={'red','blue','green','yellow','orange'};

%Join strings in cell array into single string

str1 = strjoin("-", str_array)

str2 = strjoin(",", str_array)

When you run the file, it displays the following result:

str1 =

red blue green yellow orange

str2 =

red , blue , green , yellow , orange

FINDING AND REPLACING STRINGS
Create a script file and type the following code into it:

students ={'Zara Ali','Neha Bhatnagar',...

'Monica Malik','Madhu Gautam',...

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

'Madhu Sharma','Bhawna Sharma',...

'Nuha Ali','Reva Dutta',...

'Sunaina Ali','Sofia Kabir'};

%The strrep function searches and replaces sub-string.

new_student = strrep(students(8),'Reva','Poulomi')

%Display first names

first_names = strtok(students)

When you run the file, it displays the following result:

new_student =

 'Poulomi Dutta'

first_names =

 Columns 1 through 6

 'Zara' 'Neha' 'Monica' 'Madhu' 'Madhu' 'Bhawna'

 Columns 7 through 10

 'Nuha' 'Reva' 'Sunaina' 'Sofia'

COMPARING STRINGS
Create a script file and type the following code into it:

str1 ='This is test'

str2 ='This is text'

if(strcmp(str1, str2))

 sprintf('%s and %s are equal', str1, str2)

else

 sprintf('%s and %s are not equal', str1, str2)

end

When you run the file, it displays the following result:

str1 =

This is test

str2 =

This is text

ans =

This is test and This is text are not equal

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Functions

Afunction is a group of statements that together perform a task. In MATLAB, functions are defined in

separate files. The name of the file and of the function should be the same.

Functions operate on variables within their own workspace, which is also called the local workspace, separate
from the workspace you access at the MATLAB command prompt which is called the base workspace.

Functions can accept more than one input arguments and may return more than one output arguments

Syntax of a function statement is:

function[out1,out2,..., outN]= myfun(in1,in2,in3,..., inN)

Example
The following function named mymax should be written in a file named mymax.m. It takes five numbers as
argument and returns the maximum of the numbers.

Create a function file, named mymax.m and type the following code in it:

function max = mymax(n1, n2, n3, n4, n5)

%Thisfunction calculates the maximum of the

% five numbers given as input

max = n1;

if(n2 > max)

 max = n2;

end

if(n3 > max)

 max = n3;

end

if(n4 > max)

 max = n4;

end

if(n5 > max)

 max = n5;

end

The first line of a function starts with the keyword function. It gives the name of the function and order of
arguments. In our example, the mymax function has five input arguments and one output argument.

The comment lines that come right after the function statement provide the help text. These lines are printed when
you type:

CHAPTER

17

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

help mymax

MATLAB will execute the above statement and return the following result:

This function calculates the maximum of the

 five numbers given as input

You can call the function as:

mymax(34,78,89,23,11)

MATLAB will execute the above statement and return the following result:

ans =

 89

Anonymous Functions
An anonymous function is like an inline function in traditional programming languages, defined within a single
MATLAB statement. It consists of a single MATLAB expression and any number of input and output arguments.

You can define an anonymous function right at the MATLAB command line or within a function or script.

This way you can create simple functions without having to create a file for them.

The syntax for creating an anonymous function from an expression is

f =@(arglist)expression

Example

In this example, we will write an anonymous function named power, which will take two numbers as input and
return first number raised to the power of the second number.

Create a script file and type the following code in it:

power =@(x, n) x.^n;

result1 = power(7,3)

result2 = power(49,0.5)

result3 = power(10,-10)

result4 = power (4.5,1.5)

When you run the file, it displays:

result1 =

 343

result2 =

 7

result3 =

 1.0000e-10

result4 =

 9.5459

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Primary and Sub-Functions
Any function other than an anonymous function must be defined within a file. Each function file contains a required
primary function that appears first and any number of optional sub-functions that comes after the primary function
and used by it.

Primary functions can be called from outside of the file that defines them, either from command line or from other
functions, but sub-functions cannot be called from command line or other functions, outside the function file.

Sub-functions are visible only to the primary function and other sub-functions within the function file that defines
them.

Example

Let us write a function named quadratic that would calculate the roots of a quadratic equation. The function would
take three inputs, the quadratic co-efficient, the linear co-efficient and the constant term. It would return the roots.

The function file quadratic.m will contain the primary function quadratic and the sub-function disc, which calculates

the discriminant.

Create a function file quadratic.m and type the following code in it:

function[x1,x2]= quadratic(a,b,c)

%thisfunction returns the roots of

% a quadratic equation.

%It takes 3 input arguments

% which are the co-efficients of x2, x and the

%constant term

%It returns the roots

d = disc(a,b,c);

x1 =(-b + d)/(2*a);

x2 =(-b - d)/(2*a);

end%end of quadratic

function dis = disc(a,b,c)

%function calculates the discriminant

dis = sqrt(b^2-4*a*c);

end%end of sub-function

You can call the above function from command prompt as:

quadratic(2,4,-4)

MATLAB will execute the above statement and return the following result:

ans =

 0.7321

Nested Functions
You can define functions within the body of another function. These are called nested functions. A nested function
contains any or all of the components of any other function.

Nested functions are defined within the scope of another function and they share access to the containing
function's workspace.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

A nested function follows the following syntax:

function x = A(p1, p2)

...

B(p2)

function y = B(p3)

...

end

...

end

Example
Let us rewrite the function quadratic, from previous example, however, this time the disc function will be a nested
function.

Create a function file quadratic2.m and type the following code in it:

function[x1,x2]= quadratic2(a,b,c)

function disc % nested function

d = sqrt(b^2-4*a*c);

end%end of function disc

disc;

x1 =(-b + d)/(2*a);

x2 =(-b - d)/(2*a);

end%end of function quadratic2

You can call the above function from command prompt as:

quadratic2(2,4,-4)

MATLAB will execute the above statement and return the following result:

ans =

 0.7321

Private Functions
A private function is a primary function that is visible only to a limited group of other functions. If you do not want to
expose the implementation of a function(s), you can create them as private functions.

Private functions reside in subfolders with the special name private.

They are visible only to functions in the parent folder.

Example
Let us rewrite the quadratic function. This time, however, the disc function calculating the discriminant, will be a
private function.

Create a subfolder named private in working directory. Store the following function file disc.m in it:

function dis = disc(a,b,c)

%function calculates the discriminant

dis = sqrt(b^2-4*a*c);

end%end of sub-function

Create a function quadratic3.m in your working directory and type the following code in it:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

function[x1,x2]= quadratic3(a,b,c)

%thisfunction returns the roots of

% a quadratic equation.

%It takes 3 input arguments

% which are the co-efficients of x2, x and the

%constant term

%It returns the roots

d = disc(a,b,c);

x1 =(-b + d)/(2*a);

x2 =(-b - d)/(2*a);

end%end of quadratic3

You can call the above function from command prompt as:

quadratic3(2,4,-4)

MATLAB will execute the above statement and return the following result:

ans =

 0.7321

Global Variables
Global variables can be shared by more than one function. For this, you need to declare the variable as global in
all the functions.

If you want to access that variable from the base workspace, then declare the variable at the command line.

The global declaration must occur before the variable is actually used in a function. It is a good practice to use
capital letters for the names of global variables to distinguish them from other variables.

Example
Let us create a function file named average.m and type the following code in it:

function avg = average(nums)

global TOTAL

avg = sum(nums)/TOTAL;

end

Create a script file and type the following code in it:

global TOTAL;

TOTAL =10;

n =[34,45,25,45,33,19,40,34,38,42];

av = average(n)

When you run the file, it will display the following result:

av =

 35.5000

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Data Import

Importing data in MATLAB means loading data from an external file. The importdata function allows loading

various data files of different formats. It has the following five forms:

S.N. Function and Description

1
A = importdata(filename)
Loads data into array A from the file denoted by filename.

2
A = importdata('-pastespecial')

Loads data from the system clipboard rather than from a file.

3

A = importdata(___, delimiterIn)

Interprets delimiterIn as the column separator in ASCII file, filename, or the clipboard data. You can
use delimiterIn with any of the input arguments in the above syntaxes.

4

A = importdata(___, delimiterIn, headerlinesIn)

Loads data from ASCII file, filename, or the clipboard, reading numeric data starting from
lineheaderlinesIn+1.

5

[A, delimiterOut, headerlinesOut] = importdata(___)
dditionally returns the detected delimiter character for the input ASCII file in delimiterOut and the detected
number of header lines in headerlinesOut, using any of the input arguments in the previous syntaxes.

By default, Octave does not have support for importdata() function, so you will have to search and install this
package to make following examples work with your Octave installation.

Example 1
Let us load and display an image file. Create a script file and type the following code in it:

filename ='smile.jpg';

A = importdata(filename);

image(A);

When you run the file, MATLAB displays the image file. However, you must store it in the current directory.

CHAPTER

18

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Example 2
In this example, we import a text file and specify Delimiter and Column Header. Let us create a space-delimited
ASCII file with column headers, named weeklydata.txt.

Our text file weeklydata.txt looks like this:

SunDay MonDay TuesDay WednesDay ThursDay FriDay SatureDay

95.01 76.21 61.54 40.57 55.79 70.28 81.53

73.11 45.65 79.19 93.55 75.29 69.87 74.68

60.68 41.85 92.18 91.69 81.32 90.38 74.51

48.60 82.14 73.82 41.03 0.99 67.22 93.18

89.13 44.47 57.63 89.36 13.89 19.88 46.60

Create a script file and type the following code in it:

filename ='weeklydata.txt';

delimiterIn =' ';

headerlinesIn =1;

A = importdata(filename,delimiterIn,headerlinesIn);

%View data

for k =[1:7]

 disp(A.colheaders{1, k})

 disp(A.data(:, k))

 disp(' ')

end

When you run the file, it displays the following result:

SunDay

 95.0100

 73.1100

 60.6800

 48.6000

 89.1300

MonDay

 76.2100

 45.6500

 41.8500

 82.1400

 44.4700

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

TuesDay

 61.5400

 79.1900

 92.1800

 73.8200

 57.6300

WednesDay

 40.5700

 93.5500

 91.6900

 41.0300

 89.3600

ThursDay

 55.7900

 75.2900

 81.3200

 0.9900

 13.8900

FriDay

 70.2800

 69.8700

 90.3800

 67.2200

 19.8800

SatureDay

 81.5300

 74.6800

 74.5100

 93.1800

 46.6000

Example 3

In this example, let us import data from clipboard.

Copy the following lines to the clipboard:

Mathematics is simple

Create a script file and type the following code:

A = importdata('-pastespecial')

When you run the file, it displays the following result:

A =

 'Mathematics is simple'

Low-Level File I/O
The importdata function is a high-level function. The low-level file I/O functions in MATLAB allow the most control
over reading or writing data to a file. However, these functions need more detailed information about your file to
work efficiently.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

MATLAB provides the following functions for read and write operations at the byte or character level:

Function Description

Fclose Close one or all open files

Feof Test for end-of-file

Ferror Information about file I/O errors

Fgetl Read line from file, removing newline characters

Fgets Read line from file, keeping newline characters

Fopen Open file, or obtain information about open files

Fprintf Write data to text file

Fread Read data from binary file

Frewind Move file position indicator to beginning of open file

Fscanf Read data from text file

Fseek Move to specified position in file

Ftell Position in open file

Fwrite Write data to binary file

Import Text Data Files with Low-Level I/O
MATLAB provides the following functions for low-level import of text data files:

 The fscanf function reads formatted data in a text or ASCII file.

 The fgetl and fgets functions read one line of a file at a time, where a newline character separates each line.

 The fread function reads a stream of data at the byte or bit level.

Example

We have a text data file 'myfile.txt' saved in our working directory. The file stores rainfall data for three months;
June, July and August for the year 2012.

The data in myfile.txt contains repeated sets of time, month and rainfall measurements at five places. The header
data stores the number of months M; so we have M sets of measurements.

The file looks like this:

Rainfall Data

Months: June, July, August

M=3

12:00:00

June-2012

17.21 28.52 39.78 16.55 23.67

19.15 0.35 17.57 NaN 12.01

17.92 28.49 17.40 17.06 11.09

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

9.59 9.33 NaN 0.31 0.23

10.46 13.17 NaN 14.89 19.33

20.97 19.50 17.65 14.45 14.00

18.23 10.34 17.95 16.46 19.34

09:10:02

July-2012

12.76 16.94 14.38 11.86 16.89

20.46 23.17 NaN 24.89 19.33

30.97 49.50 47.65 24.45 34.00

18.23 30.34 27.95 16.46 19.34

30.46 33.17 NaN 34.89 29.33

30.97 49.50 47.65 24.45 34.00

28.67 30.34 27.95 36.46 29.34

15:03:40

August-2012

17.09 16.55 19.59 17.25 19.22

17.54 11.45 13.48 22.55 24.01

NaN 21.19 25.85 25.05 27.21

26.79 24.98 12.23 16.99 18.67

17.54 11.45 13.48 22.55 24.01

NaN 21.19 25.85 25.05 27.21

26.79 24.98 12.23 16.99 18.67

We will import data from this file and display this data. Take the following steps:

1. Open the file with fopen function and get the file identifier.

2. Describe the data in the file with format specifiers, such as '%s' for a string, '%d' for an integer, or '%f' for a

floating-point number.

3. To skip literal characters in the file, include them in the format description. To skip a data field, use an asterisk
('*') in the specifier.

For example, to read the headers and return the single value for M, we write:

M = fscanf(fid,'%*s %*s\n%*s %*s %*s %*s\nM=%d\n\n',1);

4. By default, fscanf reads data according to our format description until it cannot match the description to the

data, or it reaches the end of the file. Here we will use for loop for reading 3 sets of data and each time, it will
read 7 rows and 5 columns.

5. We will create a structure named mydata in the workspace to store data read from the file. This structure has
three fields - time, month, and raindata array.

Create a script file and type the following code in it:

filename ='/data/myfile.txt';

rows =7;

cols =5;

% open the file

fid = fopen(filename);

% read the file headers, find M (number of months)

M = fscanf(fid,'%*s %*s\n%*s %*s %*s %*s\nM=%d\n\n',1);

% read each set of measurements

for n =1:M

 mydata(n).time = fscanf(fid,'%s',1);

 mydata(n).month = fscanf(fid,'%s',1);

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

% fscanf fills the array in column order,

% so transpose the results

 mydata(n).raindata =...

 fscanf(fid,'%f',[rows, cols]);

end

for n =1:M

 disp(mydata(n).time), disp(mydata(n).month)

 disp(mydata(n).raindata)

end

% close the file

fclose(fid);

When you run the file, it displays the following result:

12:00:00

June-2012

 17.2100 17.5700 11.0900 13.1700 14.4500

 28.5200 NaN 9.5900 NaN 14.0000

 39.7800 12.0100 9.3300 14.8900 18.2300

 16.5500 17.9200 NaN 19.3300 10.3400

 23.6700 28.4900 0.3100 20.9700 17.9500

 19.1500 17.4000 0.2300 19.5000 16.4600

 0.3500 17.0600 10.4600 17.6500 19.3400

09:10:02

July-2012

 12.7600 NaN 34.0000 33.1700 24.4500

 16.9400 24.8900 18.2300 NaN 34.0000

 14.3800 19.3300 30.3400 34.8900 28.6700

 11.8600 30.9700 27.9500 29.3300 30.3400

 16.8900 49.5000 16.4600 30.9700 27.9500

 20.4600 47.6500 19.3400 49.5000 36.4600

 23.1700 24.4500 30.4600 47.6500 29.3400

15:03:40

August-2012

 17.0900 13.4800 27.2100 11.4500 25.0500

 16.5500 22.5500 26.7900 13.4800 27.2100

 19.5900 24.0100 24.9800 22.5500 26.7900

 17.2500 NaN 12.2300 24.0100 24.9800

 19.2200 21.1900 16.9900 NaN 12.2300

 17.5400 25.8500 18.6700 21.1900 16.9900

 11.4500 25.0500 17.5400 25.8500 18.6700

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Data Export

Data export in MATLAB means to write into files. MATLAB allows you to use your data in another

application that reads ASCII files. For this, MATLAB provides several data export options.

You can create the following type of files:

 Rectangular, delimited ASCII data file from an array.

 Diary (or log) file of keystrokes and the resulting text output.

 Specialized ASCII file using low-level functions such as fprintf.

 MEX-file to access your C/C++ or Fortran routine that writes to a particular text file format.

Apart from this, you can also export data to spreadsheets.

There are two ways to export a numeric array as a delimited ASCII data file:

 Using the save function and specifying the -ASCII qualifier

 Using the dlmwrite function

Syntax for using the save function is:

save my_data.out num_array -ASCII

where, my_data.out is the delimited ASCII data file created, num_array is a numeric array and �ASCIIis the

specifier.

Syntax for using the dlmwrite function is:

dlmwrite('my_data.out', num_array, 'dlm_char')

where, my_data.out is the delimited ASCII data file created, num_array is a numeric array anddlm_char is the
delimiter character.

Example
The following example demonstrates the concept. Create a script file and type the following code:

CHAPTER

19

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

num_array = [1 2 3 4 ; 4 5 6 7; 7 8 9 0];

save array_data1.out num_array -ASCII;

type array_data1.out

dlmwrite('array_data2.out', num_array, ' ');

type array_data2.out

When you run the file, it displays the following result:

 1.0000000e+00 2.0000000e+00 3.0000000e+00 4.0000000e+00

 4.0000000e+00 5.0000000e+00 6.0000000e+00 7.0000000e+00

 7.0000000e+00 8.0000000e+00 9.0000000e+00 0.0000000e+00

1 2 3 4

4 5 6 7

7 8 9 0

Please note that the save -ascii command and the dlmwrite command does not work with cell arrays as input. To
create a delimited ASCII file from the contents of a cell array, you can

 Either, convert the cell array to a matrix using the cell2mat function

 Or export the cell array using low-level file I/O functions.

If you use the save function to write a character array to an ASCII file, it writes the ASCII equivalent of the

characters to the file.

For example, let us write the word 'hello' to a file:

h = 'hello';

save textdata.out h -ascii

type textdata.out

MATLAB executes the above statements and displays the following result:

1.0400000e+02 1.0100000e+02 1.0800000e+02 1.0800000e+02 1.1100000e+02

Which are the characters of the string 'hello' in 8-digit ASCII format.

Writing to Diary Files
Diary files are activity logs of your MATLAB session. The diary function creates an exact copy of your session in a
disk file, excluding graphics.

To turn on the diary function, type:

diary

Optionally, you can give the name of the log file, say:

diary logdata.out

To turn off the diary function:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

diary off

You can open the diary file in a text editor.

Exporting Data to Text Data Files with Low-Level I/O
So far, we have exported numeric arrays. However, you may need to create other text files, including combinations
of numeric and character data, nonrectangular output files, or files with non-ASCII encoding schemes. For these
purposes, MATLAB provides the low-level fprintf function.
As in low-level I/O file activities, before exporting, you need to open or create a file with the fopenfunction and get

the file identifier. By default, fopen opens a file for read-only access. You should specify the permission to write or
append, such as 'w' or 'a'.
After processing the file, you need to close it with fclose(fid) function.

The following example demonstrates the concept:

Example
Create a script file and type the following code in it:

% create a matrix y, with two rows

x = 0:10:100;

y = [x; log(x)];

% open a file for writing

fid = fopen('logtable.txt', 'w');

% Table Header

fprintf(fid, 'Log Function\n\n');

% print values in column order

% two values appear on each row of the file

fprintf(fid, '%f %f\n', y);

fclose(fid);

% display the file created

type logtable.txt

When you run the file, it displays the following result:

Log Function

0.000000 -Inf

10.000000 2.302585

20.000000 2.995732

30.000000 3.401197

40.000000 3.688879

50.000000 3.912023

60.000000 4.094345

70.000000 4.248495

80.000000 4.382027

90.000000 4.499810

100.000000 4.605170

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Plotting

To plot the graph of a function, you need to take the following steps:

1. Define x, by specifying the range of values for the variable x, for which the function is to be plotted
2. Define the function, y = f(x)
3. Call the plot command, as plot(x, y)

Following example would demonstrate the concept. Let us plot the simple function y = x for the range of values for

x from 0 to 100, with an increment of 5.

Create a script file and type the following code:

x =[0:5:100];

y = x;

plot(x, y)

When you run the file, MATLAB displays the following plot:

Let us take one more example to plot the function y = x2. In this example, we will draw two graphs with the same
function, but in second time, we will reduce the value of increment. Please note that as we decrease the increment,
the graph becomes smoother.

CHAPTER

20

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Create a script file and type the following code:

x =[12345678910];

x =[-100:20:100];

y = x.^2;

plot(x, y)

When you run the file, MATLAB displays the following plot:

Change the code file a little, reduce the increment to 5:

x =[-100:5:100];

y = x.^2;

plot(x, y)

MATLAB draws a smoother graph:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Adding Title, Labels, Grid Lines and Scaling on the Graph
MATLAB allows you to add title, labels along the x-axis and y-axis, grid lines and also to adjust the axes to spruce
up the graph.

 The xlabel and ylabel commands generate labels along x-axis and y-axis.

 The title command allows you to put a title on the graph.

 The grid on command allows you to put the grid lines on the graph.

 The axis equal command allows generating the plot with the same scale factors and the spaces on both axes.

 The axis square command generates a square plot.

Example
Create a script file and type the following code:

x =[0:0.01:10];

y = sin(x);

plot(x, y), xlabel('x'), ylabel('Sin(x)'), title('Sin(x) Graph'),

grid on, axis equal

MATLAB generates the following graph:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Drawing Multiple Functions on the Same Graph
You can draw multiple graphs on the same plot. The following example demonstrates the concept:

Example
Create a script file and type the following code:

x =[0:0.01:10];

y = sin(x);

g = cos(x);

plot(x, y, x, g,'.-'), legend('Sin(x)','Cos(x)')

MATLAB generates the following graph:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Setting Colors on Graph
MATLAB provides eight basic color options for drawing graphs. The following table shows the colors and their
codes:

Color Code

White w

Black k

Blue b

Red r

Cyan c

Green g

Magenta m

Yellow y

Example

Let us draw the graph of two polynomials

1. f(x) = 3x4 + 2x3+ 7x2 + 2x + 9 and
2. g(x) = 5x3 + 9x + 2

Create a script file and type the following code:

x =[-10:0.01:10];

y =3*x.^4+2* x.^3+7* x.^2+2* x +9;

g =5* x.^3+9* x +2;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

plot(x, y,'r', x, g,'g')

When you run the file, MATLAB generates the following graph:

Setting Axis Scales
The axis command allows you to set the axis scales. You can provide minimum and maximum values for x and y
axes using the axis command in the following way:

axis ([xmin xmax ymin ymax])

The following example shows this:

Example
Create a script file and type the following code:

x =[0:0.01:10];

y = exp(-x).* sin(2*x +3);

plot(x, y), axis([010-11])

When you run the file, MATLAB generates the following graph:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Generating Sub-Plots
When you create an array of plots in the same figure, each of these plots is called a subplot.
Thesubplot command is for creating subplots.

Syntax for the command is:

subplot(m, n, p)

where, m and n are the number of rows and columns of the plot array and p specifies where to put a particular plot.

Each plot created with the subplot command can have its own characteristics. Following example demonstrates
the concept:

Example

Let us generate two plots:

y = e−1.5xsin(10x)
y = e−2xsin(10x)

Create a script file and type the following code:

x =[0:0.01:5];

y = exp(-1.5*x).*sin(10*x);

subplot(1,2,1)

plot(x,y), xlabel('x'),ylabel('exp(–1.5x)*sin(10x)'),axis([05-11])

y = exp(-2*x).*sin(10*x);

subplot(1,2,2)

plot(x,y),xlabel('x'),ylabel('exp(–2x)*sin(10x)'),axis([05-11])

When you run the file, MATLAB generates the following graph:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Graphics

This chapter will continue exploring the plotting and graphics capabilities of MATLAB. We will discuss:

 Drawing bar charts

 Drawing contours

 Three dimensional plots

Drawing Bar Charts
The bar command draws a two dimensional bar chart. Let us take up an example to demonstrate the idea.

Example

Let us have an imaginary classroom with 10 students. We know the percent of marks obtained by these students
are 75, 58, 90, 87, 50, 85, 92, 75, 60 and 95. We will draw the bar chart for this data.

Create a script file and type the following code:

x =[1:10];

y =[75,58,90,87,50,85,92,75,60,95];

bar(x,y), xlabel('Student'),ylabel('Score'),

title('First Sem:')

print-deps graph.eps

When you run the file, MATLAB displays the following bar chart:

CHAPTER

21

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Drawing Contours
A contour line of a function of two variables is a curve along which the function has a constant value. Contour lines
are used for creating contour maps by joining points of equal elevation above a given level, such as mean sea
level.

MATLAB provides a contour function for drawing contour maps.

Example
Let us generate a contour map that shows the contour lines for a given function g = f(x, y). This function has two
variables. So, we will have to generate two independent variables, i.e., two data sets x and y. This is done by
calling the meshgrid command.
The meshgrid command is used for generating a matrix of elements that give the range over x and y along with

the specification of increment in each case.

Let us plot our function g = f(x, y), where −5 ≤ x ≤ 5, −3 ≤ y ≤ 3. Let us take an increment of 0.1 for both the values.
The variables are set as:

[x,y]= meshgrid(–5:0.1:5,–3:0.1:3);

Lastly, we need to assign the function. Let our function be: x2 + y2

Create a script file and type the following code:

[x,y]= meshgrid(-5:0.1:5,-3:0.1:3);%independent variables

g = x.^2+ y.^2;%ourfunction

contour(x,y,g)% call the contour function

print-deps graph.eps

When you run the file, MATLAB displays the following contour map:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Let us modify the code a little to spruce up the map:

[x,y]= meshgrid(-5:0.1:5,-3:0.1:3);%independent variables

g = x.^2+ y.^2;%ourfunction

[C, h]= contour(x,y,g);% call the contour function

set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2)

print-deps graph.eps

When you run the file, MATLAB displays the following contour map:

Three Dimensional Plots
Three-dimensional plots basically display a surface defined by a function in two variables, g = f (x,y).

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

As before, to define g, we first create a set of (x,y) points over the domain of the function using
themeshgrid command. Next, we assign the function itself. Finally, we use the surf command to create a surface

plot.

The following example demonstrates the concept:

Example
Let us create a 3D surface map for the function g = xe-(x2 + y2)

Create a script file and type the following code:

[x,y]= meshgrid(-2:.2:2);

g = x .* exp(-x.^2- y.^2);

surf(x, y, g)

print-deps graph.eps

When you run the file, MATLAB displays the following 3-D map:

You can also use the mesh command to generate a three-dimensional surface. However, the surfcommand
displays both the connecting lines and the faces of the surface in color, whereas, the meshcommand creates a

wireframe surface with colored lines connecting the defining points.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Algebra

So far,we have seen that all the examples work in MATLAB as well as its GNU, alternatively called Octave.

But for solving basic algebraic equations, both MATLAB and Octave are little different, so we will try to cover
MATLAB and Octave in separate sections.

We will also discuss factorizing and simplification of algebraic expressions.

Solving Basic Algebraic Equations in MATLAB
The solve command is used for solving algebraic equations. In its simplest form, the solve function takes the

equation enclosed in quotes as an argument.

For example, let us solve for x in the equation x-5 = 0

solve('x-5=0')

MATLAB will execute the above statement and return the following result:

ans =

 5

You can also call the solve function as:

y = solve('x-5 = 0')

MATLAB will execute the above statement and return the following result:

y =

 5

You may even not include the right hand side of the equation:

solve('x-5')

MATLAB will execute the above statement and return the following result:

ans =

 5

CHAPTER

22

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

If the equation involves multiple symbols, then MATLAB by default assumes that you are solving for x, however,
the solve command has another form:

solve(equation, variable)

where, you can also mention the variable.

For example, let us solve the equation v – u – 3t2 = 0, for v. In this case, we should write:

solve('v-u-3*t^2=0','v')

MATLAB will execute the above statement and return the following result:

ans =

 3*t^2 + u

Solving Basic Algebraic Equations in Octave
The roots command is used for solving algebraic equations in Octave and you can write above examples as

follows:

For example, let us solve for x in the equation x-5 = 0

roots([1,-5])

Octave will execute the above statement and return the following result:

ans =

 5

You can also call the solve function as:

y = roots([1,-5])

Octave will execute the above statement and return the following result:

y =

 5

Solving Quadratic Equations in MATLAB
The solve command can also solve higher order equations. It is often used to solve quadratic equations. The

function returns the roots of the equation in an array.

The following example solves the quadratic equation x2 -7x +12 = 0. Create a script file and type the following
code:

eq ='x^2 -7*x + 12 = 0';

s = solve(eq);

disp('The first root is: '), disp(s(1));

disp('The second root is: '), disp(s(2));

When you run the file, it displays the following result:

The first root is:

3

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

The second root is:

4

Solving Quadratic Equations in Octave
The following example solves the quadratic equation x2 -7x +12 = 0 in Octave. Create a script file and type the
following code:

s = roots([1,-7,12]);

disp('The first root is: '), disp(s(1));

disp('The second root is: '), disp(s(2));

When you run the file, it displays the following result:

The first root is:

 4

The second root is:

 3

Solving Higher Order Equations in MATLAB
The solve command can also solve higher order equations. For example, let us solve a cubic equation as (x-3)2(x-

7) = 0

solve('(x-3)^2*(x-7)=0')

MATLAB will execute the above statement and return the following result:

ans =

 3

 3

 7

In case of higher order equations, roots are long containing many terms. You can get the numerical value of such
roots by converting them to double. The following example solves the fourth order equation x4 − 7x3 + 3x2 − 5x + 9
= 0.

Create a script file and type the following code:

eq ='x^4 - 7*x^3 + 3*x^2 - 5*x + 9 = 0';

s = solve(eq);

disp('The first root is: '), disp(s(1));

disp('The second root is: '), disp(s(2));

disp('The third root is: '), disp(s(3));

disp('The fourth root is: '), disp(s(4));

% converting the roots to double type

disp('Numeric value of first root'), disp(double(s(1)));

disp('Numeric value of second root'), disp(double(s(2)));

disp('Numeric value of third root'), disp(double(s(3)));

disp('Numeric value of fourth root'), disp(double(s(4)));

When you run the file, it returns the following result:

The first root is:

6.630396332390718431485053218985

 The second root is:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

1.0597804633025896291682772499885

 The third root is:

- 0.34508839784665403032666523448675 - 1.0778362954630176596831109269793*i

 The fourth root is:

- 0.34508839784665403032666523448675 + 1.0778362954630176596831109269793*i

Numeric value of first root

 6.6304

Numeric value of second root

 1.0598

Numeric value of third root

 -0.3451 - 1.0778i

Numeric value of fourth root

 -0.3451 + 1.0778i

Please note that the last two roots are complex numbers.

Solving Higher Order Equations in Octave
The following example solves the fourth order equation x4 − 7x3 + 3x2 − 5x + 9 = 0.

Create a script file and type the following code:

v =[1,-7,3,-5,9];

s = roots(v);

% converting the roots to double type

disp('Numeric value of first root'), disp(double(s(1)));

disp('Numeric value of second root'), disp(double(s(2)));

disp('Numeric value of third root'), disp(double(s(3)));

disp('Numeric value of fourth root'), disp(double(s(4)));

When you run the file, it returns the following result:

Numeric value of first root

 6.6304

Numeric value of second root

-0.34509 + 1.07784i

Numeric value of third root

-0.34509 - 1.07784i

Numeric value of fourth root

 1.0598

Solving System of Equations in MATLAB
The solve command can also be used to generate solutions of systems of equations involving more than one

variables. Let us take up a simple example to demonstrate this use.

Let us solve the equations:

5x + 9y = 5

3x – 6y = 4

Create a script file and type the following code:

s = solve('5*x + 9*y = 5','3*x - 6*y = 4');

s.x

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

s.y

When you run the file, it displays the following result:

ans =

 22/19

ans =

-5/57

In same way, you can solve larger linear systems. Consider the following set of equations:

x + 3y -2z = 5

3x + 5y + 6z = 7

2x + 4y + 3z = 8

Solving System of Equations in Octave
We have a little different approach to solve a system of 'n' linear equations in 'n' unknowns. Let us take up a simple
example to demonstrate this use.

Let us solve the equations:

5x + 9y = 5

3x – 6y = 4

Such a system of linear equations can be written as the single matrix equation Ax = b, where A is the coefficient
matrix, b is the column vector containing the right-hand side of the linear equations and x is the column vector
representing the solution as shown in the below program:

Create a script file and type the following code:

A =[5,9;3,-6];

b =[5;4];

A \ b

When you run the file, it displays the following result:

ans =

 1.157895

 -0.087719

In same way, you can solve larger linear systems as given below:

x + 3y -2z = 5

3x + 5y + 6z = 7

2x + 4y + 3z = 8

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Expanding and Collecting Equations in MATLAB
The expand and the collect command expands and collects an equation respectively. The following example

demonstrates the concepts:

When you work with many symbolic functions, you should declare that your variables are symbolic.

Create a script file and type the following code:

syms x %symbolic variable x

syms y %symbolic variable x

% expanding equations

expand((x-5)*(x+9))

expand((x+2)*(x-3)*(x-5)*(x+7))

expand(sin(2*x))

expand(cos(x+y))

% collecting equations

collect(x^3*(x-7))

collect(x^4*(x-3)*(x-5))

When you run the file, it displays the following result:

ans =

 x^2 + 4*x - 45

 ans =

 x^4 + x^3 - 43*x^2 + 23*x + 210

 ans =

 2*cos(x)*sin(x)

 ans =

cos(x)*cos(y) - sin(x)*sin(y)

 ans =

 x^4 - 7*x^3

 ans =

 x^6 - 8*x^5 + 15*x^4

Expanding and Collecting Equations in Octave
You need to have symbolic package, which provides expand and the collect command to expand and collect an

equation, respectively. The following example demonstrates the concepts:
When you work with many symbolic functions, you should declare that your variables are symbolic but Octave has
different approach to define symbolic variables. Notice the use of Sin and Cos, they are also defined in symbolic

package.

Create a script file and type the following code:

% first of all load the package, make sure its installed.

pkg load symbolic

% make symbols module available

symbols

% define symbolic variables

x = sym ('x');

y = sym ('y');

z = sym ('z');

% expanding equations

expand((x-5)*(x+9))

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

expand((x+2)*(x-3)*(x-5)*(x+7))

expand(Sin(2*x))

expand(Cos(x+y))

% collecting equations

collect(x^3*(x-7), z)

collect(x^4*(x-3)*(x-5), z)

When you run the file, it displays the following result:

ans =

-45.0+x^2+(4.0)*x

ans =

210.0+x^4-(43.0)*x^2+x^3+(23.0)*x

ans =

sin((2.0)*x)

ans =

cos(y+x)

ans =

x^(3.0)*(-7.0+x)

ans =

(-3.0+x)*x^(4.0)*(-5.0+x)

Factorization and Simplification of Algebraic Expressions
The factor command factorizes an expression and the simplify command simplifies an expression. The following

example demonstrates the concept:

Example
Create a script file and type the following code:

syms x

syms y

factor(x^3- y^3)

factor([x^2-y^2,x^3+y^3])

simplify((x^4-16)/(x^2-4))

When you run the file, it displays the following result:

ans =

(x - y)*(x^2 + x*y + y^2)

 ans =

 [(x - y)*(x + y), (x + y)*(x^2 - x*y + y^2)]

 ans =

 x^2 + 4

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Calculus

MATLAB provides various ways for solving problems of differential and integral calculus, solving

differential equations of any degree and calculation of limits. Best of all, you can easily plot the graphs of complex
functions and check maxima, minima and other stationery points on a graph by solving the original function, as well
as its derivative.

In this chapter and in coming couple of chapters, we will deal with the problems of calculus. In this chapter, we will
discuss pre-calculus concepts i.e., calculating limits of functions and verifying the properties of limits.

In the next chapter Differential, we will compute derivative of an expression and find the local maxima and minima

on a graph. We will also discuss solving differential equations.
Finally, in the Integration chapter, we will discuss integral calculus.

Calculating Limits
MATLAB provides the limit command for calculating limits. In its most basic form, the limit command takes

expression as an argument and finds the limit of the expression as the independent variable goes to zero.

For example, let us calculate the limit of a function f(x) = (x3 + 5)/(x4 + 7), as x tends to zero.

syms x

limit((x^3+5)/(x^4+7))

MATLAB will execute the above statement and return the following result:

ans =

 5/7

The limit command falls in the realm of symbolic computing; you need to use the syms command to tell MATLAB

which symbolic variables you are using. You can also compute limit of a function, as the variable tends to some
number other than zero. To calculate lim x->a(f(x)), we use the limit command with arguments. The first being the
expression and the second is the number, that x approaches, here it is a.

For example, let us calculate limit of a function f(x) = (x-3)/(x-1), as x tends to 1.

limit((x -3)/(x-1),1)

MATLAB will execute the above statement and return the following result:

ans =

CHAPTER

23

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 NaN

Let's take another example,

limit(x^2+5,3)

MATLAB will execute the above statement and return the following result:

ans =

 14

Calculating Limits using Octave
Following is Octave version of the above example using symbolic package, try to execute and compare the result:

pkg load symbolic

symbols

x=sym("x");

subs((x^3+5)/(x^4+7),x,0)

Octave will execute the above statement and return the following result:

ans =

0.7142857142857142857

Verification of Basic Properties of Limits
Algebraic Limit Theorem provides some basic properties of limits. These are as follows:

Let us consider two functions:

1. f(x) = (3x + 5)/(x - 3)

2. g(x) = x2 + 1.

Let us calculate the limits of the functions as x tends to 5, of both functions and verify the basic properties of limits
using these two functions and MATLAB.

Example
Create a script file and type the following code into it:

syms x

f =(3*x +5)/(x-3);

g = x^2+1;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

l1 = limit(f,4)

l2 = limit (g,4)

lAdd = limit(f + g,4)

lSub = limit(f - g,4)

lMult = limit(f*g,4)

lDiv = limit (f/g,4)

When you run the file, it displays:

l1 =

 17

l2 =

17

lAdd =

 34

lSub =

 0

lMult =

289

lDiv =

1

Verification of Basic Properties of Limits using Octave
Following is Octave version of the above example using symbolic package, try to execute and compare the result:

pkg load symbolic

symbols

x = sym("x");

f =(3*x +5)/(x-3);

g = x^2+1;

l1=subs(f, x,4)

l2 = subs (g, x,4)

lAdd = subs (f+g, x,4)

lSub = subs (f-g, x,4)

lMult = subs (f*g, x,4)

lDiv = subs (f/g, x,4)

Octave will execute the above statement and return the following result:

l1 =

17.0

l2 =

17.0

lAdd =

34.0

lSub =

0.0

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

lMult =

289.0

lDiv =

1.0

Left and Right Sided Limits

When a function has a discontinuity for some particular value of the variable, the limit does not exist at that point. In
other words, limits of a function f(x) has discontinuity at x = a, when the value of limit, as x approaches x from left
side, does not equal the value of the limit as x approaches from right side.

This leads to the concept of left-handed and right-handed limits. A left-handed limit is defined as the limit as x -> a,
from the left, i.e., x approaches a, for values of x < a. A right-handed limit is defined as the limit as x -> a, from the
right, i.e., x approaches a, for values of x > a. When the left-handed limit and right-handed limits are not equal, the
limit does not exist.

Let us consider a function:

f(x) = (x - 3)/|x - 3|

We will show that limx->3 f(x) does not exist. MATLAB helps us to establish this fact in two ways:

 By plotting the graph of the function and showing the discontinuity

 By computing the limits and showing that both are different.

The left-handed and right-handed limits are computed by passing the character strings 'left' and 'right' to the limit
command as the last argument.

Example
Create a script file and type the following code into it:

f =(x -3)/abs(x-3);

ezplot(f,[-1,5])

l = limit(f,x,3,'left')

r = limit(f,x,3,'right')

When you run the file, MATLAB draws the following plot,

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

and displays the following output:

l =

 -1

r =

1

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Differential

MATLAB provides the diff command for computing symbolic derivatives. In its simplest form, you pass

the function you want to differentiate to diff command as an argument.
For example, let us compute the derivative of the function f(t) = 3t2 + 2t-2

Example
Create a script file and type the following code into it:

syms t

f =3*t^2+2*t^(-2);

diff(f)

When the above code is compiled and executed, it produces the following result:

ans =

6*t - 4/t^3

Following is Octave equivalent of the above calculation:

pkg load symbolic

symbols

t = sym("t");

f =3*t^2+2*t^(-2);

differentiate(f,t)

Octave executes the code and returns the following result:

ans =

-(4.0)*t^(-3.0)+(6.0)*t

Verification of Elementary Rules of Differentiation
Let us briefly state various equations or rules for differentiation of functions and verify these rules. For this purpose,
we will write f'(x) for a first order derivative and f"(x) for a second order derivative.

Following are the rules for differentiation:

CHAPTER

24

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

RULE 1

For any functions f and g and any real numbers a and b the derivative of the function:

h(x) = af(x) + bg(x) with respect to x is given by:
h'(x) = af'(x) + bg'(x)

RULE 2
The sum and subtraction rules state that if f and g are two functions, f' and g' are their derivatives respectively,

then,

(f + g)' = f' + g'
(f - g)' = f' - g'

RULE 3
The product rule states that if f and g are two functions, f' and g' are their derivatives respectively, then,

(f.g)' = f'.g + g'.f

RULE 4
The quotient rule states that if f and g are two functions, f' and g' are their derivatives respectively, then,

(f/g)' = (f'.g - g'.f)/g2

RULE 5
The polynomial or elementary power rule states that, if y = f(x) = xn, then f' = n. x(n-1)
A direct outcome of this rule is derivative of any constant is zero, i.e., if y = k, any constant, then

f' = 0

RULE 6
The chain rule states that, The derivative of the function of a function h(x) = f(g(x)) with respect to x is,

h'(x)= f'(g(x)).g'(x)

Example
Create a script file and type the following code into it:

syms x

syms t

f =(x +2)*(x^2+3)

der1 = diff(f)

f =(t^2+3)*(sqrt(t)+ t^3)

der2 = diff(f)

f =(x^2-2*x +1)*(3*x^3-5*x^2+2)

der3 = diff(f)

f =(2*x^2+3*x)/(x^3+1)

der4 = diff(f)

f =(x^2+1)^17

der5 = diff(f)

f =(t^3+3* t^2+5*t -9)^(-6)

der6 = diff(f)

When you run the file, MATLAB displays the following result:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

f =

 (x^2 + 3)*(x + 2)

 der1 =

 2*x*(x + 2) + x^2 + 3

f =

 (t^(1/2) + t^3)*(t^2 + 3)

 der2 =

 (t^2 + 3)*(3*t^2 + 1/(2*t^(1/2))) + 2*t*(t^(1/2) + t^3)

f =

 (x^2 - 2*x + 1)*(3*x^3 - 5*x^2 + 2)

der3 =

 (2*x - 2)*(3*x^3 - 5*x^2 + 2) - (- 9*x^2 + 10*x)*(x^2 - 2*x + 1)

 f =

 (2*x^2 + 3*x)/(x^3 + 1)

der4 =

 (4*x + 3)/(x^3 + 1) - (3*x^2*(2*x^2 + 3*x))/(x^3 + 1)^2

f =

 (x^2 + 1)^17

der5 =

 34*x*(x^2 + 1)^16

f =

1/(t^3 + 3*t^2 + 5*t - 9)^6

der6 =

 -(6*(3*t^2 + 6*t + 5))/(t^3 + 3*t^2 + 5*t - 9)^7

Following is Octave equivalent of the above calculation:

pkg load symbolic

symbols

x=sym("x");

t=sym("t");

f =(x +2)*(x^2+3)

der1 = differentiate(f,x)

f =(t^2+3)*(t^(1/2)+ t^3)

der2 = differentiate(f,t)

f =(x^2-2*x +1)*(3*x^3-5*x^2+2)

der3 = differentiate(f,x)

f =(2*x^2+3*x)/(x^3+1)

der4 = differentiate(f,x)

f =(x^2+1)^17

der5 = differentiate(f,x)

f =(t^3+3* t^2+5*t -9)^(-6)

der6 = differentiate(f,t)

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Derivatives of Exponential, Logarithmic and Trigonometric
Functions
The following table provides the derivatives of commonly used exponential, logarithmic and trigonometric
functions:

Function Derivative

ca.x ca.x.ln c.a (ln is natural logarithm)

ex ex

ln x 1/x

lncx 1/x.ln c

xx xx.(1 + ln x)

sin(x) cos(x)

cos(x) -sin(x)

tan(x) sec2(x), or 1/cos2(x), or 1 + tan2(x)

cot(x) -csc2(x), or -1/sin2(x), or -(1 + cot2(x))

sec(x) sec(x).tan(x)

csc(x) -csc(x).cot(x)

Example
Create a script file and type the following code into it:

syms x

y = exp(x)

diff(y)

y = x^9

diff(y)

y = sin(x)

diff(y)

y = tan(x)

diff(y)

y = cos(x)

diff(y)

y = log(x)

diff(y)

y = log10(x)

diff(y)

y = sin(x)^2

diff(y)

y = cos(3*x^2+2*x +1)

diff(y)

y = exp(x)/sin(x)

diff(y)

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

When you run the file, MATLAB displays the following result:

y =

 exp(x)

 ans =

 exp(x)

y =

x^9

 ans =

 9*x^8

y =

 sin(x)

 ans =

 cos(x)

y =

 tan(x)

ans =

 tan(x)^2 + 1

 y =

 cos(x)

 ans =

 -sin(x)

y =

 log(x)

 ans =

 1/x

y =

 log(x)/log(10)

 ans =

 1/(x*log(10))

y =

 sin(x)^2

 ans =

 2*cos(x)*sin(x)

 y =

cos(3*x^2 + 2*x + 1)

 ans =

 -sin(3*x^2 + 2*x + 1)*(6*x + 2)

y =

 exp(x)/sin(x)

 ans =

 exp(x)/sin(x) - (exp(x)*cos(x))/sin(x)^2

Following is Octave equivalent of the above calculation:

pkg load symbolic

symbols

x = sym("x");

y =Exp(x)

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

differentiate(y,x)

y = x^9

differentiate(y,x)

y =Sin(x)

differentiate(y,x)

y =Tan(x)

differentiate(y,x)

y =Cos(x)

differentiate(y,x)

y =Log(x)

differentiate(y,x)

% symbolic packages does not have this support

%y =Log10(x)

%differentiate(y,x)

y =Sin(x)^2

differentiate(y,x)

y =Cos(3*x^2+2*x +1)

differentiate(y,x)

y =Exp(x)/Sin(x)

differentiate(y,x)

Computing Higher Order Derivatives
To compute higher derivatives of a function f, we use the syntax diff(f,n).

Let us compute the second derivative of the function y = f(x) = x .e-3x

f = x*exp(-3*x);

diff(f,2)

MATLAB executes the code and returns the following result:

ans =

9*x*exp(-3*x) - 6*exp(-3*x)

Following is Octave equivalent of the above calculation:

pkg load symbolic

symbols

x = sym("x");

f = x*Exp(-3*x);

differentiate(f, x,2)

Example
In this example, let us solve a problem. Given that a function y = f(x) = 3 sin(x) + 7 cos(5x). We will have to find
out whether the equation f" + f = -5cos(2x) holds true.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Create a script file and type the following code into it:

syms x

y =3*sin(x)+7*cos(5*x);% defining the function

lhs = diff(y,2)+y;%evaluting the lhs of the equation

rhs =-5*cos(2*x);%rhs of the equation

if(isequal(lhs,rhs))

 disp('Yes, the equation holds true');

else

 disp('No, the equation does not hold true');

end

disp('Value of LHS is: '), disp(lhs);

When you run the file, it displays the following result:

No, the equation does not hold true

Value of LHS is:

-168*cos(5*x)

Following is Octave equivalent of the above calculation:

pkg load symbolic

symbols

x = sym("x");

y =3*Sin(x)+7*Cos(5*x);% defining the function

lhs = differentiate(y, x,2)+ y;%evaluting the lhs of the equation

rhs =-5*Cos(2*x);%rhs of the equation

if(lhs == rhs)

 disp('Yes, the equation holds true');

else

 disp('No, the equation does not hold true');

end

disp('Value of LHS is: '), disp(lhs);

Finding the Maxima and Minima of a Curve
If we are searching for the local maxima and minima for a graph, we are basically looking for the highest or lowest
points on the graph of the function at a particular locality, or for a particular range of values of the symbolic
variable.

For a function y = f(x) the points on the graph where the graph has zero slope are called stationary points. In

other words stationary points are where f'(x) = 0.

To find the stationary points of a function we differentiate, we need to set the derivative equal to zero and solve the
equation.

Example
Let us find the stationary points of the function f(x) = 2x3 + 3x2 − 12x + 17

Take the following steps:

1. First let us enter the function and plot its graph:

syms x

y =2*x^3+3*x^2-12*x +17;% defining the function

ezplot(y)

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

MATLAB executes the code and returns the following plot:

Here is Octave equivalent code for the above example:

pkg load symbolic

symbols

x = sym('x');

y =inline("2*x^3 + 3*x^2 - 12*x + 17");

ezplot(y)

print-deps graph.eps

2. Our aim is to find some local maxima and minima on the graph, so let us find the local maxima and minima for
the interval [-2, 2] on the graph.

syms x

y =2*x^3+3*x^2-12*x +17;% defining the function

ezplot(y,[-2,2])

MATLAB executes the code and returns the following plot:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Here is Octave equivalent code for the above example:

pkg load symbolic

symbols

x = sym('x');

y =inline("2*x^3 + 3*x^2 - 12*x + 17");

ezplot(y,[-2,2])

print-deps graph.eps

3. Next, let us compute the derivative

g = diff(y)

MATLAB executes the code and returns the following result:

g =

6*x^2 + 6*x - 12

Here is Octave equivalent of the above calculation:

pkg load symbolic

symbols

x = sym("x");

y =2*x^3+3*x^2-12*x +17;

g = differentiate(y,x)

4. Let us solve the derivative function, g, to get the values where it becomes zero.

s = solve(g)

MATLAB executes the code and returns the following result:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

s =

 1

 -2

Following is Octave equivalent of the above calculation:

pkg load symbolic

symbols

x = sym("x");

y =2*x^3+3*x^2-12*x +17;

g = differentiate(y,x)

roots([6,6,-12])

5. This agrees with our plot. So let us evaluate the function f at the critical points x = 1, -2. We can substitute a
value in a symbolic function by using the subs command.

subs(y,1), subs(y,-2)

MATLAB executes the code and returns the following result:

ans =

 10

ans =

 37

Following is Octave equivalent of the above calculation:

pkg load symbolic

symbols

x = sym("x");

y =2*x^3+3*x^2-12*x +17;

g = differentiate(y,x)

roots([6,6,-12])

subs(y, x,1), subs(y, x,-2)

Therefore, The minimum and maximum values on the function f(x) = 2x3 + 3x2 − 12x + 17, in the interval [-2,2] are
10 and 37.

Solving Differential Equations
MATLAB provides the dsolve command for solving differential equations symbolically.

The most basic form of the dsolve command for finding the solution to a single equation is:

dsolve('eqn')

where eqn is a text string used to enter the equation.

It returns a symbolic solution with a set of arbitrary constants that MATLAB labels C1, C2, and so on.

You can also specify initial and boundary conditions for the problem, as comma-delimited list following the
equation as:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

dsolve('eqn','cond1','cond2',…)

For the purpose of using dsolve command, derivatives are indicated with a D. For example, an equation like f'(t)

= -2*f + cost(t) is entered as:

'Df = -2*f + cos(t)'

Higher derivatives are indicated by following D by the order of the derivative.

For example the equation f"(x) + 2f'(x) = 5sin3x should be entered as:

'D2y + 2Dy = 5*sin(3*x)'

Let us take up a simple example of a first order differential equation: y' = 5y.

s = dsolve('Dy = 5*y')

MATLAB executes the code and returns the following result:

s =

 C2*exp(5*t)

Let us take up another example of a second order differential equation as: y" - y = 0, y(0) = -1, y'(0) = 2.

dsolve('D2y - y = 0','y(0) = -1','Dy(0) = 2')

MATLAB executes the code and returns the following result:

ans =

 exp(t)/2 - (3*exp(-t))/2

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Integration

Integration deals with two essentially different types of problems.

 In the first type, derivative of a function is given and we want to find the function. Therefore, we basically
reverse the process of differentiation. This reverse process is known as anti-differentiation, or finding the
primitive function, or finding an indefinite integral.

 The second type of problems involve adding up a very large number of very small quantities and then taking
a limit as the size of the quantities approaches zero, while the number of terms tend to infinity. This process
leads to the definition of the definite integral.

Definite integrals are used for finding area, volume, center of gravity, moment of inertia, work done by a force, and
in numerous other applications.

Finding Indefinite Integral Using MATLAB
By definition, if the derivative of a function f(x) is f'(x), then we say that an indefinite integral of f'(x) with respect to x
is f(x). For example, since the derivative (with respect to x) of x2 is 2x, we can say that an indefinite integral of 2x is
x2.

In symbols:

f'(x2) = 2x, therefore,
∫ 2xdx = x2.

Indefinite integral is not unique, because derivative of x2 + c, for any value of a constant c, will also be 2x.

This is expressed in symbols as:

∫ 2xdx = x2 + c.

Where, c is called an 'arbitrary constant'.

MATLAB provides an int command for calculating integral of an expression. To derive an expression for the

indefinite integral of a function, we write:

int(f);

For example, from our previous example:

syms x

CHAPTER

25

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

int(2*x)

MATLAB executes the above statement and returns the following result:

ans =

 x^2

Example 1
In this example, let us find the integral of some commonly used expressions. Create a script file and type the
following code in it:

syms x n

int(sym(x^n))

f ='sin(n*t)'

int(sym(f))

syms a t

int(a*cos(pi*t))

int(a^x)

When you run the file, it displays the following result:

ans =

 piecewise([n == -1, log(x)], [n ~= -1, x^(n + 1)/(n + 1)])

f =

sin(n*t)

ans =

 -cos(n*t)/n

 ans =

 (a*sin(pi*t))/pi

 ans =

 a^x/log(a)

Example 2
Create a script file and type the following code in it:

syms x n

int(cos(x))

int(exp(x))

int(log(x))

int(x^-1)

int(x^5*cos(5*x))

pretty(int(x^5*cos(5*x)))

int(x^-5)

int(sec(x)^2)

pretty(int(1-10*x +9* x^2))

int((3+5*x -6*x^2-7*x^3)/2*x^2)

pretty(int((3+5*x -6*x^2-7*x^3)/2*x^2))

Note that the pretty command returns an expression in a more readable format.

When you run the file, it displays the following result:

ans =

sin(x)

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

ans =

exp(x)

ans =

x*(log(x) - 1)

ans =

log(x)

ans =

(24*cos(5*x))/3125 + (24*x*sin(5*x))/625 - (12*x^2*cos(5*x))/125 + (x^4*cos(5*x))/5

- (4*x^3*sin(5*x))/25 + (x^5*sin(5*x))/5

 2 4

 24 cos(5 x) 24 x sin(5 x) 12 x cos(5 x) x cos(5 x)

 ----------- + ------------- - -------------- + ----------- -

 3125 625 125 5

 3 5

 4 x sin(5 x) x sin(5 x)

 ------------- + -----------

 25 5

ans =

-1/(4*x^4)

ans =

tan(x)

 2

 x (3 x - 5 x + 1)

ans =

- (7*x^6)/12 - (3*x^5)/5 + (5*x^4)/8 + x^3/2

 6 5 4 3

 7 x 3 x 5 x x

 - ---- - ---- + ---- + --

 12 5 8 2

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Finding Definite Integral Using MATLAB
By definition, definite integral is basically the limit of a sum. We use definite integrals to find areas such as the area
between a curve and the x-axis and the area between two curves. Definite integrals can also be used in other
situations, where the quantity required can be expressed as the limit of a sum.

The int command can be used for definite integration by passing the limits over which you want to calculate the

integral.

To calculate

we write,

int(x, a, b)

For example, to calculate the value of we write:

int(x,4,9)

MATLAB executes the above statement and returns the following result:

ans =

 65/2

Following is Octave equivalent of the above calculation:

pkg load symbolic

symbols

x = sym("x");

f = x;

c =[1,0];

integral = polyint(c);

a = polyval(integral,9)- polyval(integral,4);

display('Area: '), disp(double(a));

An alternative solution can be given using quad() function provided by Octave as follows:

pkg load symbolic

symbols

f =inline("x");

[a, ierror, nfneval]= quad(f,4,9);

display('Area: '), disp(double(a));

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Example 1
Let us calculate the area enclosed between the x-axis, and the curve y = x3−2x+5 and the ordinates x = 1 and x =
2.

The required area is given by:

Create a script file and type the following code:

f = x^3-2*x +5;

a =int(f,1,2)

display('Area: '), disp(double(a));

When you run the file, it displays the following result:

a =

23/4

Area:

 5.7500

Following is Octave equivalent of the above calculation:

pkg load symbolic

symbols

x = sym("x");

f = x^3-2*x +5;

c =[1,0,-2,5];

integral = polyint(c);

a = polyval(integral,2)- polyval(integral,1);

display('Area: '), disp(double(a));

An alternative solution can be given using quad() function provided by Octave as follows:

pkg load symbolic

symbols

x = sym("x");

f =inline("x^3 - 2*x +5");

[a, ierror, nfneval]= quad(f,1,2);

display('Area: '), disp(double(a));

Example 2
Find the area under the curve: f(x) = x2 cos(x) for −4 ≤ x ≤ 9.

Create a script file and write the following code:

f = x^2*cos(x);

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

ezplot(f,[-4,9])

a =int(f,-4,9)

disp('Area: '), disp(double(a));

When you run the file, MATLAB plots the graph:

and displays the following result:

a =

8*cos(4) + 18*cos(9) + 14*sin(4) + 79*sin(9)

Area:

 0.3326

Following is Octave equivalent of the above calculation:

pkg load symbolic

symbols

x = sym("x");

f =inline("x^2*cos(x)");

ezplot(f,[-4,9])

print-deps graph.eps

[a, ierror, nfneval]= quad(f,-4,9);

display('Area: '), disp(double(a));

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Polynomials

MATLAB represents polynomials as row vectors containing coefficients ordered by descending powers.

For example, the equation P(x) = x4 + 7x3 - 5x + 9 could be represented as:

p = [1 7 0 -5 9];

Evaluating Polynomials
The polyval function is used for evaluating a polynomial at a specified value. For example, to evaluate our
previous polynomial p, at x = 4, type:

p =[170-59];

polyval(p,4)

MATLAB executes the above statements and returns the following result:

ans =

 693

MATLAB also provides the polyvalm function for evaluating a matrix polynomial. A matrix polynomial is
apolynomial with matrices as variables.

For example, let us create a square matrix X and evaluate the polynomial p, at X:

p =[170-59];

X =[12-34;2-563;3102;5-738];

polyvalm(p, X)

MATLAB executes the above statements and returns the following result:

ans =

 2307 -1769 -939 4499

 2314 -2376 -249 4695

 2256 -1892 -549 4310

 4570 -4532 -1062 9269

CHAPTER

26

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Finding the Roots of Polynomials
The roots function calculates the roots of a polynomial. For example, to calculate the roots of our polynomial p,

type:

p =[170-59];

r = roots(p)

MATLAB executes the above statements and returns the following result:

r =

 -6.8661 + 0.0000i

 -1.4247 + 0.0000i

 0.6454 + 0.7095i

 0.6454 - 0.7095i

The function poly is an inverse of the roots function and returns to the polynomial coefficients. For example:

p2 = poly(r)

MATLAB executes the above statements and returns the following result:

p2 =

 1.0000 7.0000 0.0000 -5.0000 9.0000

Polynomial Curve Fitting
The polyfit function finds the coefficients of a polynomial that fits a set of data in a least-squares sense. If x and y

are two vectors containing the x and y data to be fitted to a n-degree polynomial, then we get the polynomial fitting
the data by writing:

p = polyfit(x,y,n)

Example
Create a script file and type the following code:

x =[123456]; y =[5.543.1128290.7498.4978.67];%data

p = polyfit(x,y,4)%get the polynomial

%Compute the values of the polyfit estimate over a finer range,

%and plot the estimate over the real data values for comparison:

x2 =1:.1:6;

y2 = polyval(p,x2);

plot(x,y,'o',x2,y2)

grid on

When you run the file, MATLAB displays the following result:

p =

 4.1056 -47.9607 222.2598 -362.7453 191.1250

And plots the following graph:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Transforms

MATLAB provides command for working with transforms, such as the Laplace and Fourier transforms.

Transforms are used in science and engineering as a tool for simplifying analysis and look at data from another
angle.

For example, the Fourier transform allows us to convert a signal represented as a function of time to a function of
frequency. Laplace transform allows us to convert a differential equation to an algebraic equation.

MATLAB provides the laplace, fourier and fft commands to work with Laplace, Fourier and Fast Fourier

transforms.

The Laplace Transform
The Laplace transform of a function of time f(t) is given by the following integral:

Laplace transform is also denoted as transform of f(t) to F(s). You can see this transform or integration process
converts f(t), a function of the symbolic variable t, into another function F(s), with another variable s.

Laplace transform turns differential equations into algebraic ones. To compute a Laplace transform of a function
f(t), write:

laplace(f(t))

Example

In this example, we will compute the Laplace transform of some commonly used functions.

Create a script file and type the following code:

syms s t a b w

laplace(a)

laplace(t^2)

laplace(t^9)

laplace(exp(-b*t))

laplace(sin(w*t))

laplace(cos(w*t))

CHAPTER

27

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

When you run the file, it displays the following result:

ans =

 1/s^2

 ans =

 2/s^3

 ans =

 362880/s^10

 ans =

 1/(b + s)

ans =

 w/(s^2 + w^2)

ans =

 s/(s^2 + w^2)

The Inverse Laplace Transform
MATLAB allows us to compute the inverse Laplace transform using the command ilaplace.

For example,

ilaplace(1/s^3)

MATLAB will execute the above statement and display the result:

ans =

 t^2/2

Example
Create a script file and type the following code:

syms s t a b w

ilaplace(1/s^7)

ilaplace(2/(w+s))

ilaplace(s/(s^2+4))

ilaplace(exp(-b*t))

ilaplace(w/(s^2+ w^2))

ilaplace(s/(s^2+ w^2))

When you run the file, it displays the following result:

ans =

t^6/720

 ans =

 2*exp(-t*w)

 ans =

 cos(2*t)

 ans =

 ilaplace(exp(-b*t), t, x)

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

 ans =

 sin(t*w)

 ans =

 cos(t*w)

The Fourier Transforms
Fourier transforms commonly transforms a mathematical function of time, f(t), into a new function, sometimes
denoted by or F, whose argument is frequency with units of cycles/s (hertz) or radians per second. The new
function is then known as the Fourier transform and/or the frequency spectrum of the function f.

Example
Create a script file and type the following code in it:

syms x

f = exp(-2*x^2);%ourfunction

ezplot(f,[-2,2])% plot of ourfunction

FT = fourier(f) %Fourier transform

When you run the file, MATLAB plots the following graph:

And displays the following result:

FT =

 (2^(1/2)*pi^(1/2)*exp(-w^2/8))/2

Plotting the Fourier transform as:

ezplot(FT)

Gives the following graph:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Inverse Fourier Transforms
MATLAB provides the ifourier command for computing the inverse Fourier transform of a function. For example,

f = ifourier(-2*exp(-abs(w)))

MATLAB will execute the above statement and display the result:

f =

-2/(pi*(x^2 + 1))

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

GNU Octave

GNU Octave is a high-level programming language like MATLAB and it is mostly compatible with

MATLAB. It is also used for numerical computations.

Octave has the following common features with MATLAB:

 matrices are fundamental data type

 it has built-in support for complex numbers

 it has built-in math functions and libraries

 it supports user-defined functions

GNU Octave is also freely redistributable software. You may redistribute it and/or modify it under the terms of the
GNU General Public License (GPL) as published by the Free Software Foundation.

MATLAB vs Octave
Most MATLAB programs run in Octave, but some of the Octave programs may not run in MATLAB because,
Octave allows some syntax that MATLAB does not.

For example, MATLAB supports single quotes only, but Octave supports both single and double quotes for
defining strings. If you are looking for a tutorial on Octave, then kindly go through this tutorial from beginning which
covers both MATLAB as well as Octave.

COMPATIBLE EXAMPLES

Almost all the examples covered in this tutorial are compatible with MATLAB as well as Octave. Let's try following
example in MATLAB and Octave which produces same result without any syntax changes:

This example creates a 3D surface map for the function g = xe-(x2 + y2). Create a script file and type the following

code:

[x,y]= meshgrid(-2:.2:2);

g = x .* exp(-x.^2- y.^2);

surf(x, y, g)

CHAPTER

28

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

print-deps graph.eps

When you run the file, MATLAB displays the following 3-D map:

NON-COMPATIBLE EXAMPLES

Though all the core functionality of MATLAB is available in Octave, there are some functionality for example,
Differential & Integration Calculus, which does not match exactly in both the languages. This tutorial has tried to
give both type of examples where they differed in their syntax.

Consider following example where MATLAB and Octave make use of different functions to get the area of a curve:

f(x) = x2 cos(x) for −4 ≤ x ≤ 9. Following is MATLAB version of the code:

f = x^2*cos(x);

ezplot(f,[-4,9])

a =int(f,-4,9)

disp('Area: '), disp(double(a));

When you run the file, MATLAB plots the graph:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

and displays the following result:

a =

8*cos(4) + 18*cos(9) + 14*sin(4) + 79*sin(9)

Area:

 0.3326

But to give area of the same curve in Octave, you will have to make use of symbolic package as follows:

pkg load symbolic

symbols

x = sym("x");

f =inline("x^2*cos(x)");

ezplot(f,[-4,9])

print-deps graph.eps

[a, ierror, nfneval]= quad(f,-4,9);

display('Area: '), disp(double(a));

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Simulink

Simulink is a simulation and model-based design environment for dynamic and embedded systems,

integrated with MATLAB. Simulink, also developed by MathWorks, is a data flow graphical programming language
tool for modeling, simulating and analyzing multi-domain dynamic systems. It is basically a graphical block
diagramming tool with customizable set of block libraries.

It allows you to incorporate MATLAB algorithms into models as well as export the simulation results into MATLAB
for further analysis.

Simulink supports:

 system-level design

 simulation

 automatic code generation

 testing and verification of embedded systems

There are several other add-on products provided by MathWorks and third-party hardware and software products
that are available for use with Simulink.

The following list gives brief description of some of them:

 Stateflow allows developing state machines and flow charts.

 Simulink Coder allows to automatically generate C source code for real-time implementation of systems.

 xPC Target together with x86-based real-time systems provides an environment to simulate and test

Simulink and Stateflow models in real-time on the physical system.

 Embedded Coder supports specific embedded targets.

 HDL Coder allows to automatically generate synthesizable VHDL and Verilog

 SimEvents provides a library of graphical building blocks for modeling queuing systems

Simulink is capable of systematic verification and validation of models through modeling style checking,
requirements traceability and model coverage analysis.

Simulink Design Verifier allows you identify design errors and generates test case scenarios for model checking.

CHAPTER

29

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Using Simulink
To open Simulink, type in the MATLAB work space:

simulink

Simulink opens with the Library Browser. The Library Browser is used for building simulation models.

On the left side window pane, you will find several libraries categorized on the basis of various systems, clicking
on each one will display the design blocks on the right window pane.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Building Models
To create a new model, click the New button on the Library Browser's toolbar. This opens a new untitled model

window

A Simulink model is a block diagram.

Model elements are added by selecting the appropriate elements from the Library Browser and dragging them
into the Model window.

Alternately, you can copy the model elements and paste them into the model window.

Examples

Drag and drop items from the Simulink library to make your project.

For the purpose of this example, 2 blocks will be used for the simulation - A Source (a signal) and aSink (a

scope). A signal generator (the source) generates an analog signal, which will then be graphically visualized by
the scope(the sink).

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Begin by dragging the required blocks from the library to the project window. Then, connect the blocks together
which can be done by dragging connectors from connection points on one block to those of another.

Let us drag a 'Sine Wave' block into the model.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Select 'Sinks' from the library and drag a 'Scope' block into the model.

Drag a signal line from the output of the Sine Wave block to the input of the Scope block.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning

Run the simulation by pressing the 'Run' button, keeping all parameters default (you can change them from the

Simulation menu)

You should get the below graph from the scope.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

	Matlab Tutorial
	Audience
	Prerequisites
	Copyright & Disclaimer Notice
	Overview
	MATLAB's Power of Computational Mathematics
	Features of MATLAB
	Uses of MATLAB

	Environment
	Local Environment Setup
	Understanding the MATLAB Environment:
	Set up GNU Octave

	Basic Syntax
	Hands on Practice
	Use of Semicolon (;) in MATLAB
	Adding Comments
	Commonly used Operators and Special Characters
	Special Variables and Constants
	Naming Variables
	Saving Your Work

	Variables
	Multiple Assignments
	I have forgotten the Variables!
	Long Assignments
	The format Command
	Creating Vectors
	Creating Matrices

	Commands
	Commands for Managing a Session
	Commands for Working with the System
	Input and Output Commands
	Vector, Matrix and Array Commands
	Plotting Commands

	M-Files
	The M Files
	Creating and Running Script File
	Example

	Data - Types
	Data Types Available in MATLAB
	Example
	Data Type Conversion
	Determination of Data Types
	Example

	Operators
	Arithmetic Operators
	Example
	Functions for Arithmetic Operations
	Relational Operators
	Example
	Example
	Logical Operators
	Functions for Logical Operations
	Bitwise Operations
	Example
	Set Operations

	Decisions
	Example:
	Syntax:
	Flow Diagram:
	Example:
	Syntax:
	Example
	Syntax:
	Example:
	Syntax
	Example
	Syntax:
	Example:

	Loops
	While loop
	Syntax:
	Example
	for loop
	Syntax:
	Example 1
	Example 2
	Example 3
	Nested loops
	Syntax:
	Example
	Loop Control Statements
	Flow Diagram:
	Example:
	Flow Diagram:
	Example:

	Vectors
	Row Vectors:
	Column Vectors:
	Referencing the Elements of a Vector
	Vector Operations

	Matrics
	Referencing the Elements of a Matrix
	Deleting a Row or a Column in a Matrix
	Example
	Matrix Operations
	Addition and Subtraction of Matrices
	Example
	Division of Matrices
	Example
	Scalar Operations of Matrices
	Example
	Transpose of a Matrix
	Example
	Concatenating Matrices
	Example
	Matrix Multiplication
	Example
	Determinant of a Matrix
	Example
	Inverse of a Matrix
	Example

	Arrays
	Special Arrays in MATLAB
	A Magic Square
	Multidimensional Arrays
	Example
	Array Functions
	Examples
	Sorting Arrays
	Cell Array
	Where,
	Example
	Accessing Data in Cell Arrays

	Colon Notation
	Example

	Numbers
	Conversion to Various Numeric Data Types
	Example
	Example
	Smallest and Largest Integers
	Example
	Smallest and Largest Floating Point Numbers
	Example

	Strings
	Example
	Rectangular Character Array
	Example
	Example
	Combining Strings into a Cell Array
	Example
	String Functions in MATLAB
	Examples
	FORMATTING STRINGS
	JOINING STRINGS
	FINDING AND REPLACING STRINGS
	COMPARING STRINGS

	Functions
	Example
	Anonymous Functions
	Example
	Primary and Sub-Functions
	Example
	Nested Functions
	Example
	Private Functions
	Example
	Global Variables
	Example

	Data Import
	Example 1
	Example 2
	Example 3
	Mathematics is simple
	Low-Level File I/O
	Import Text Data Files with Low-Level I/O
	Example

	Data Export
	Example
	Writing to Diary Files
	Exporting Data to Text Data Files with Low-Level I/O
	Example

	Plotting
	Adding Title, Labels, Grid Lines and Scaling on the Graph
	Example
	Drawing Multiple Functions on the Same Graph
	Example
	Setting Colors on Graph
	Example
	Setting Axis Scales
	Example
	Generating Sub-Plots
	Example

	Graphics
	Drawing Bar Charts
	Example
	Drawing Contours
	Example
	Three Dimensional Plots
	Example

	Algebra
	Solving Basic Algebraic Equations in MATLAB
	Solving Basic Algebraic Equations in Octave
	Solving Quadratic Equations in MATLAB
	Solving Quadratic Equations in Octave
	Solving Higher Order Equations in MATLAB
	Solving Higher Order Equations in Octave
	Solving System of Equations in MATLAB
	Solving System of Equations in Octave
	Expanding and Collecting Equations in MATLAB
	Expanding and Collecting Equations in Octave
	Factorization and Simplification of Algebraic Expressions
	Example

	Calculus
	Calculating Limits
	Calculating Limits using Octave
	Verification of Basic Properties of Limits
	Example
	Verification of Basic Properties of Limits using Octave
	Left and Right Sided Limits
	Example

	Differential
	Example
	Verification of Elementary Rules of Differentiation
	RULE 1
	RULE 2
	RULE 3
	RULE 4
	RULE 5
	RULE 6
	Example
	Derivatives of Exponential, Logarithmic and Trigonometric Functions
	Example
	Computing Higher Order Derivatives
	Example
	Finding the Maxima and Minima of a Curve
	Example
	Solving Differential Equations

	Integration
	Finding Indefinite Integral Using MATLAB
	Example 1
	Example 2
	Finding Definite Integral Using MATLAB
	Example 1
	Example 2

	Polynomials
	Evaluating Polynomials
	Finding the Roots of Polynomials
	Polynomial Curve Fitting
	Example

	Transforms
	The Laplace Transform
	Example
	The Inverse Laplace Transform
	Example
	The Fourier Transforms
	Example
	Inverse Fourier Transforms

	GNU Octave
	MATLAB vs Octave
	COMPATIBLE EXAMPLES
	NON-COMPATIBLE EXAMPLES

	Simulink
	Using Simulink
	Building Models
	Examples

